
July 2003

Open NerveCenterTM 3.8

Designing and Managing Behavior Models

UNIX and Windows

Disclaimer

The information contained in this publication is subject to change without notice. OpenService, Inc.
makes no warranty of any kind with regard to this manual, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. OpenService, Inc. shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual.

Copyright

Copyright © 1994-2003 OpenService, Inc. All rights reserved. Open is a registered trademark of
OpenService, Inc. The Open logo and Open NerveCenter are trademarks of OpenService, Inc. All
other trademarks or registered trademarks are the property of their respective owners.

Printed in the USA, July 2003.

Open NerveCenter Designing and Managing Behavior Models

OpenService, Inc.
110 Turnpike Road, Suite 308
Westborough, MA 01581
Phone 508-366-0804
Fax 508-366-0814
http://www.open.com

http://www.open.com

Contents
Chapter 1. Understanding NerveCenter .1

What is NerveCenter? . 2

How NerveCenter Manages Nodes . 3

Defining a Set of Nodes . 3

Detecting Conditions . 4

Correlating Conditions . 4

Detecting the Persistence of a Condition . 5

Finding a Set of Conditions . 6

Looking for a Sequence of Conditions . 7

Responding to Conditions . 9

Notification . 10

Logging . 10

Causing State Transitions . 11

Corrective Actions . 11

Action Router . 12

Main NerveCenter Components . 13

The NerveCenter Server . 13

The NerveCenter Database . 13

Objects in the Database . 14

Behavior Models . 15

Predefined Behavior Models . 16

The NerveCenter User Interface . 17

The NerveCenter Administrator . 18
iii

The NerveCenter Client . 19

The NerveCenter Web Client . 20

The Command Line Interface . 20

Role in Network Management Strategy . 21

Standalone Operation . 22

Using Multiple NerveCenter Servers . 23

Integration with Network Management Platforms . 24

Integration with NMPs for Node Information . 25

Chapter 2. Behavior Models and Their Components . 27

Behavior Models . 28

Detecting Conditions . 29

Tracking Conditions . 29

Monitoring a Set of Nodes . 30

NerveCenter Objects . 31

Nodes . 32

Property Groups and Properties . 33

Polls . 34

Trap Masks . 36

Alarms . 38

Alarm Scope . 39

Constructing Behavior Models . 42

How the Pieces Fit Together . 43

An Example of a Behavior Model . 45

Chapter 3. NerveCenter Support for SNMP v3 . 47

Overview of NerveCenter SNMP v3 Support . 48

NerveCenter Support for SNMP v3 Security . 49

NerveCenter Support for SNMP v3 Digest Keys and Passwords 50

SNMP v3 Operations Log . 51

Signing a Log for SNMP v3 Errors Associated with Your Client 53
iv Designing and Managing Behavior Models

Signing a Log for SNMP v3 Errors Associated with a Remote Client or Administrator . . 54

Viewing the SNMP v3 Operations Log . 55

SNMP Error Status . 56

Using the SNMP Test Version Poll . 58

Testing SNMP v1 and v2c Agents . 58

Testing SNMP v3 Agents . 58

How To Use the Test Version Poll . 60

Chapter 4. Getting Started with NerveCenter Client .61

Starting the Client . 62

Connecting to a Server . 63

Connecting to a Server Manually . 64

Connecting to a Server Automatically . 67

Sharing MIB Information from Multiple Servers . 69

Selecting the Active Server . 70

Deleting a Server from the Server List . 71

Changing the Client’s Server Port . 72

Setting Up Alarm-Instance Filters . 73

Filtering Alarms by IP Range . 74

IP Subnet Filter Exclusion Rules . 76

IP Subnet Filter Examples . 78

Filtering Alarms by Severity . 80

Filtering Alarms by Property Groups . 84

Associating a Filter with a Server . 87

Rules for Associating Filters with Alarms . 89

Multiple Filters are ORed Together . 89

Multiple Conditions in a Single Filter are ANDed Together . 89
Contents v

Specifying Heartbeat Messaging . 90

Modifying the Heartbeat Message Interval . 91

Deactivating Heartbeat Messaging . 92

Disconnecting from a Server . 93

Chapter 5. Discovering and Defining Nodes . 95

Discovering Nodes . 96

Using a Network Management Platform’s Discovery Mechanism 97

Using NerveCenter’s IPSweep Behavior Model . 98

Modifying the IPSweep Alarm . 99

Enabling the IPSweep Alarm . 102

Defining Nodes Manually . 104

Chapter 6. Configuring SNMP Settings for Nodes . 107

Manually Changing the SNMP Version Used to Manage a Node . 108

Changing the Security Level of an SNMP v3 Node . 110

Changing the Authentication Protocol for an SNMP v3 Node . 112

Classifying the SNMP Version Configured on Nodes . 114

Classifying the SNMP Version for One or More Nodes Manually 115

Classifying the SNMP Version for All Nodes Manually . 116

Confirming the SNMP Version for a Node . 116

When NerveCenter Classifies a Node’s SNMP Version . 118

How NerveCenter Classifies a Node’s SNMP Version . 119

Chapter 7. Defining Property Groups and Properties . 121

Listing Property Groups and Properties . 122

Listing Property Groups . 122

Listing Properties . 123

Creating a Property . 124

Creating a New Property Group . 125

Based on an Existing Property Group . 126
vi Designing and Managing Behavior Models

Based on the Contents of MIBs . 127

Adding Properties Manually . 129

Assigning a Property Group to a Node . 130

Using the Node Definition Window . 130

Using the Node List Window . 132

Using the AssignPropertyGroup() Function . 133

In a Poll Condition . 133

In a Trigger Function . 135

In a Perl Subroutine . 136

Using the Set Attribute Alarm Action . 138

Using OID to Property Group Mappings . 140

Tips for Using Property Groups and Properties . 141

Categorizing Nodes . 141

Move from the General to the Specific . 142

MIB Objects . 142

Chapter 8. Using Polls .143

Listing Polls . 145

Defining a Poll . 147

Writing a Poll Condition . 150

The Basic Procedure for Creating a Poll Condition . 152

Functions for Use in Poll Conditions . 153

NerveCenter Functions for Poll Conditions . 154

DefineTrigger() Function . 155

FireTrigger() Function . 156

AssignPropertyGroup() Function . 158

in() Function . 159

String-Matching Functions . 159

Using the Pop-Up Menu for Perl . 160

Examples of Poll Conditions . 162
Contents vii

Example 1 . 162

Example 2 . 162

Example 3 . 163

Example 4 . 163

Example 5 . 163

Documenting a Poll . 164

How to Create Notes for a Poll . 164

What to Include in Notes for a Poll . 166

Enabling a Poll . 168

Chapter 9. Using Trap Masks . 171

About Trap Masks . 172

How NerveCenter Decodes SNMP v2c/v3 Traps . 173

Listing Trap Masks . 174

Defining a Trap Mask . 176

Writing a Trigger Function . 180

Functions for Use in Trigger Functions . 181

Variable-Binding Functions . 182

Variables for Use in Trigger Functions . 183

Examples of Trigger Functions . 184

Example 1 . 184

Example 2 . 184

Example 3 . 184

Example 4 . 184

Example 5 . 185

Example 6 . 185

Documenting a Trap Mask . 186

How to Create Notes for a Trap Mask . 186

What to Include in Notes for a Trap Mask . 188

Enabling a Trap Mask . 190
viii Designing and Managing Behavior Models

Chapter 10. Using Other Data Sources .193

NerveCenter’s Built-In Triggers . 195

SNMP Requests . 195

Ping Requests . 196

Multiple Errors Examples . 196

Built-in Trigger Firing Sequence . 197

Matching Errors with Pending SNMP and Ping Requests . 198

Multi-homed Nodes . 199

A List of Built-In Triggers . 199

An Example Using Built-In Triggers . 203

Another NerveCenter . 204

Creating a Trap Mask . 205

Variable Bindings for NerveCenter Informs . 207

An Example Trigger Function . 209

HP OpenView IT/Operations . 209

Listing OpC Masks . 211

Defining an OpC Mask . 212

Writing an OpC Trigger Function . 215

Functions for Use in OpC Trigger Functions . 216

Variables for Use in OpC Trigger Functions . 216

Examples of OpC Trigger Functions . 217

Documenting an OpC Mask . 218

How to Create Notes for an OpC Mask . 218

What to Include in Notes for an OpC Mask . 220

Enabling an OpC Mask . 220
Contents ix

Chapter 11. Using Alarms . 223

Listing Alarms . 225

Defining an Alarm . 227

Alarm Scope . 230

Defining States . 232

Defining a State . 233

Changing the Size of the State Icons . 234

Deleting a State . 235

Defining Transitions . 235

Defining a Transition . 236

Associating an Action with a Transition . 237

Changing the Size of Transition Icons . 239

Deleting a Transition . 240

Documenting an Alarm . 240

How to Create Notes for an Alarm . 240

What to Include in Notes for an Alarm . 242

Enabling an Alarm . 244

Correlation Expressions . 246

Chapter 12. Alarm Actions . 255

Action Router . 257

Alarm Counter . 258

Beep . 262

Clear Trigger . 263

Command . 264

Delete Node . 266

EventLog . 266

Fire Trigger . 269

Inform . 273

Inform OpC . 276
x Designing and Managing Behavior Models

Inform Platform . 277

Inform Specific Numbers . 279

Log to Database . 280

Log to File . 281

Microsoft Mail . 282

Notes . 283

Paging . 285

Perl Subroutine . 286

Defining a Perl Subroutine . 288

Functions for Use in Perl Subroutines . 290

Counter() Function . 291

Node Relationship Functions . 291

NerveCenter Variables . 292

Perl Subroutine Example . 296

Send Trap . 296

Set Attribute . 300

SMTP Mail . 302

SNMP Set . 303

Chapter 13. Performing Actions Conditionally
(Action Router) .307

Listing Existing Action Router Rules . 309

Creating an Action Router Rule . 310

Defining a Rule Condition . 311

Functions for Use in Action Router Rule Conditions . 312

Using Action Router’s Object Lists . 313

Defining a Rule Action . 315
Contents xi

Chapter 14. Creating Multi-Alarm Behavior Models . 317

IfUpDownStatusByType . 318

IF-IfStatus Alarm . 320

IF-SelectType Perl Subroutine . 321

Interface-type Alarms . 322

IF-IfFramePVC . 323

IfColdWarmStart Alarm . 324

IfNmDemand Alarm . 325

Chapter 15. Managing NerveCenter Objects . 327

Enabling Objects . 328

Copying Objects . 329

Copying a Property Group . 329

Copying Other Objects . 330

Deleting Objects . 331

Using a Delete Button . 332

Using a Pop-Up Menu . 333

Changing an Object’s Property or Property Group . 333

Changing a Poll’s or an Alarm’s Property . 333

Changing a Node’s Property Group . 334

Changing an Alarm’s Scope . 335

Suppressing Polling . 336

Suppressing a Node . 336

Making a Poll Suppressible . 337

Changing Other Node Attributes . 337
xii Designing and Managing Behavior Models

Chapter 16. NerveCenter Severities .339

Definition of a Severity . 341

Severity Attributes Used by NerveCenter . 342

Severity Attributes and Network Management Platforms . 343

Level . 343

Platform Name . 343

Default Severities . 344

Creating a New Severity . 345

Creating Custom Colors . 347

Chapter 17. Importing and Exporting NerveCenter Nodes and Objects 349

Exporting Behavior Models to Other Servers . 351

Exporting Behavior Models to a File . 353

More About Exporting Behavior Models . 354

Exporting NerveCenter Objects and Nodes to Other Servers . 355

Exporting NerveCenter Objects and Nodes to a File . 358

More about Exporting Objects . 360

Importing Node, Object, and Behavior Model Files . 362

Appendix A. Communications and Data .365

Appendix B. Debugging a Behavior Model .371

Enabling a Behavior Model’s Components . 372

Checking Properties and Property Groups . 372

Checking a Poll’s Property . 372

Checking a Poll’s Poll Condition . 373

Checking an Alarm’s Property . 373

Matching Triggers and Alarm Transitions . 374

Identities of Triggers and Transitions . 374

Rules for Matching . 376

Name Rule . 376
Contents xiii

Subobject Rule . 376

Node Rule . 377

Property Rule . 377

Examples of Matching Triggers and Transitions . 377

Example 1 . 377

Example 2 . 378

Example 3 . 379

Auditing Behavior Models . 380

Appendix C. Error Messages . 383

User Interface Messages . 384

Error Messages . 386

Action Manager Error Messages . 387

Alarm Filter Manager Error Messages . 391

Deserialize Manager Error Messages . 391

Flatfile Error Messages . 391

Inform NerveCenter Error Messages . 392

Inform OV Error Messages . 392

LogToDatabase Manager Error Messages . 394

LogToFile Manager Error Messages . 395

OpC Manager Error Messages . 395

Poll Manager Error Messages . 395

Protocol Manager Error Messages . 396

PA Resync Manager Error Messages . 397

Server Manager Error Messages . 399

Trap Manager Error Messages . 403

NerveCenter installation Error Messages (UNIX) . 404

OpenView Configuration Error Messages (UNIX) . 407

Index . 409
xiv Designing and Managing Behavior Models

1
Understanding NerveCenter
This chapter explains:

� What type of product NerveCenterTM is

� How NerveCenter manages nodes

� What the NerveCenter main components are

� What roles NerveCenter can play in a network or system management solution

For information on these topics, see the sections shown in the table below.

Table 1-1. Sections Included in this Chapter

Section Description

What is NerveCenter? on page 2 Explains that NerveCenter is an advanced event automation solution.

How NerveCenter Manages
Nodes on page 3

Explains how NerveCenter isolates and responds to emerging network
and system problems.

Main NerveCenter Components
on page 13

Discusses NerveCenter’s client/server architecture. Explains how
NerveCenter tracks network conditions using finite state machines called
alarms, where these alarms get their input, and how alarm transitions can
result in actions.

Role in Network Management
Strategy on page 21

Explains how NerveCenter can be used stand-alone, integrated with other
NerveCenter systems, or integrated with other Open or third-party
products.
1

What is NerveCenter?
What is NerveCenter?
As corporations have focused attention on keeping their corporate networks available at all times,
they have invested heavily not only in redundant hardware, but also in network management
software. Unfortunately, many network management tools whose purpose is to identify network
faults can overwhelm operators with raw network data. Only after manually sifting through this raw
data and identifying the real problems can operators take the appropriate corrective actions.

NerveCenter is different. It is able to isolate and respond to network conditions proactively. In
addition, NerveCenter is a highly-scalable, cross-platform solution.

At the heart of NerveCenter is its event correlation engine. For each device that it is monitoring,
NerveCenter creates one or more finite state machines—or alarms—that define operational states it
wants to detect. NerveCenter also defines rules that effect transitions between the operational
states. These rules can be very simple; for example, a state transition can be caused by the receipt of
a generic Simple Network Management Protocol (SNMP) trap. Or they can be quite complex and
take advantage of NerveCenter’s support for Perl expressions.

These state machines enable NerveCenter to correlate data from multiple sources over time before
it concludes that a problem exists. As a simple example, if NerveCenter receives a link-down trap
for an interface, it does not immediately report a problem; instead, it waits for a link-up trap for that
interface. If NerveCenter receives a link-up trap within a given amount of time, it can ignore both
traps. Otherwise, it can report that a particular communication link is down.

Once NerveCenter has identified a problem, it can take automatic corrective actions. A variety of
actions can be associated with state transitions, including notifying an administrator, executing a
program or script that corrects the problem, or notifying a network management platform of the
network condition.

In addition to being an advanced event automation solution, NerveCenter is also a highly scalable
client/server application. It can run co-resident with a network management platform (such as
Hewlett Packard’s OpenView Network Node Manager) and manage thousands of nodes. Or the
server can be distributed as a background process at tens or even hundreds of remote offices.

Finally, NerveCenter is a cross-platform solution. NerveCenter automatically correlates events,
identifies problems, and takes corrective actions across network devices running an SNMP agent,
UNIX systems, and Windows workstations and servers. The capability for NerveCenter
components on Windows systems to work with components on UNIX systems enables you to
install NerveCenter on the type of system—hardware and operating system—that is most
appropriate for a job. For instance you might install NerveCenter on a Windows system to monitor
a small network of 1000 nodes or fewer, and you might install NerveCenter on a symmetric
multiprocessor UNIX server to manage several thousand nodes. You could monitor and configure
both of these systems from a Windows or UNIX workstation.
2 Designing and Managing Behavior Models

How NerveCenter Manages Nodes
How NerveCenter Manages Nodes
To perform its job of event automation, NerveCenter relies on the definition of behavior models.
These models are constructed from NerveCenter objects (which we’ll discuss in detail later) and
define:

� Which nodes the behavior model will affect

� How NerveCenter will detect certain conditions on these nodes

� How NerveCenter will correlate the conditions it detects

� How NerveCenter will respond to network problems

The following sections elaborate on the tasks that NerveCenter performs in order to automate event
handling:

� Defining a Set of Nodes on page 3

� Detecting Conditions on page 4

� Correlating Conditions on page 4

� Responding to Conditions on page 9

Defining a Set of Nodes

NerveCenter can get the list of devices to monitor from a network management platform, discover
them on the network, or import this information from another NerveCenter database.

NerveCenter assigns to each managed node a set of properties, and these properties determine
which behavior models apply to a node. Properties typically describe the type of the device—for
example, a router—or are named after objects in the management information base (MIB) used to
manage the node.

Once NerveCenter assigns a set of properties to a node, NerveCenter automatically applies to that
node all of the models that refer to those properties. If NerveCenter detects that a node has been
deleted or that its properties have changed, the product immediately retires or updates the set of
models that are actively managing that node. This dynamic process enables NerveCenter to adapt at
once to changes in network configuration reported by the management platform or by
NerveCenter’s own discovery mechanism.

It is also possible to assign properties to nodes manually to further refine the set of models that
NerveCenter uses to manage a node. For example, you may want to distinguish a backbone router
from a campus router to regulate how much and how often status information is collected.
Chapter 1, Understanding NerveCenter 3

How NerveCenter Manages Nodes
Detecting Conditions

As is discussed in the section Role in Network Management Strategy on page 21, NerveCenter can
collect network and system data from a variety of sources. However, most frequently NerveCenter
obtains data from Simple Network Management Protocol (SNMP) agents running on managed
nodes. This means that NerveCenter detects most conditions by:

� Receiving and interpreting an SNMP trap

� Polling an SNMP agent for data and analyzing that data

One of the criticisms of SNMP-based enterprise management platforms over the years has been
that, because SNMP trap delivery is unreliable, the platform must poll agents and this polling
generates too much network traffic. NerveCenter helps alleviate this problem by enabling you to
determine the interval at which a poll is sent and to turn a poll off. Even more important is
NerveCenter’s smart polling feature. NerveCenter sends a poll to a node only if the poll:

� Is part of a behavior model designed to manage that node

� Can cause a change in the alarm’s state.

Also, because of NerveCenter’s client/server architecture, NerveCenter servers can be distributed
so that all polling is done on LANs, and not across a WAN. Furthermore, use of SNMP v2c and v3
features allow SNMP to be utilized both reliably and securely.

Correlating Conditions

Event correlation involves taking a number of detected network conditions, often a large number,
and determining:

� How these conditions, or some subset of them, are related

� The underlying cause of a set of conditions, or the problem to which these conditions have led

For instance, NerveCenter may look at a large number of events and identify a subset of events that
relate to SNMP authentication failures on a managed node. NerveCenter may then determine that
the authentication failures were far enough apart that no problem exists, or it may find that several
failures occurred within a short period of time, indicating a possible security problem. In the latter
case, NerveCenter might notify administrators of the potential problem. In this way, administrators
receive one notice about a potential security problem rather than having to browse through a long
list of detected conditions and identify the problem themselves.

Detected conditions can be correlated in many ways. In fact, once you start working with
NerveCenter, you will help determine how these conditions are correlated yourself. However, there
are some typical ways in which NerveCenter finds relationships between conditions. Several of
these methods are discussed in the following sections:

� Detecting the Persistence of a Condition on page 5

� Finding a Set of Conditions on page 6
4 Designing and Managing Behavior Models

How NerveCenter Manages Nodes
� Looking for a Sequence of Conditions on page 7

Detecting the Persistence of a Condition

Probably the simplest method of correlating detected conditions is to search for the persistence of a
problem. For example, a network administrator might want to know if an SNMP agent sends a
link-down trap and that trap is not followed within three minutes by a link-up trap. NerveCenter
can track such a link-down condition using a state diagram similar to the one shown below.

Figure 1-1. State Diagram for Detecting a Link-Down Condition

Let’s say that NerveCenter has this state diagram in memory and is tracking a particular interface
for a link-down condition.

� The first time NerveCenter sees a link-down trap concerning that interface, the current state
becomes DownTrap, and NerveCenter starts a three-minute timer.

� If NerveCenter receives a link-up trap within three minutes of the link-down trap, the current
state reverts to Ground (normal) because NerveCenter is looking for a persistent link-down
condition. In addition, NerveCenter stops the timer. However, if three minutes expire before a
link-up trap arrives, the current state becomes LinkDown, and NerveCenter informs a network
management platform that the link is down.

� The current state remains LinkDown until a link-up trap does arrive. At that point, the current
state reverts to Ground, and the process begins again.

Start timer

Delete
timer

Link-up
trap

Timer goes
off

Inform
management
platform

Link-up
trap

Ground

DownTrap

LinkDown

Link-down trap
Chapter 1, Understanding NerveCenter 5

How NerveCenter Manages Nodes
Finding a Set of Conditions

Another common type of event correlation is the identification of a set of conditions. For example,
let’s say that you’re monitoring the interfaces on a router. To be notified when a low-speed interface
goes down or when a high-speed interface goes down, you might use the following state diagram.

Figure 1-2. State Diagram for Detecting a Router Interface Problem

What causes state transitions in this situation? NerveCenter can poll the SNMP agent on the router
for the values of the following interface attributes: ifOperStatus, ifAdminStatus, ifSpeed,
ifInOctets, and ifOutOctets.

If the poll successfully returns values for these attributes, NerveCenter can then evaluate the
expression shown below in pseudocode:

if ifOperStatus is down && ifAdminStatus is up &&
(ifInOctets > 0 || ifOutOctets > 0)

if ifSpeed < 56K
move to lowSpeedProblem state

else
move to highSpeedProblem state

else
move to ground state

This code is looking for two sets of conditions. The first set is:

� The operational state of the interface is down.

� The administrative status of the interface is up.

� Traffic has been passed on this interface. (If no traffic has been passed, the interface is just
coming up.)

� The interface’s current bandwidth is less than 56K.

Ground

Interface
back up

Interface
back up

Low-speed
interface
down

High-speed
interface
down

Low-speed
Problem

High-speed
ProblemE-mail Page
6 Designing and Managing Behavior Models

How NerveCenter Manages Nodes
If this set of conditions is met, a problem exists on an interface that is probably used for a dial-up
connection.

The second set of conditions is the same as the first, except that the last condition is that the
interface’s current bandwidth is greater than or equal to 56K. If this set of conditions is met, a
problem exists on a higher speed interface.

If neither of these sets of conditions is met, the current state should return to, or remain at, Ground.

NerveCenter may detect many conditions concerning an interface before it finds the set of
conditions it is looking for. The administrator need not see information about each of these
conditions. He or she will be emailed or paged if the interface goes down.

Looking for a Sequence of Conditions

NerveCenter also enables you to correlate conditions by looking for sequences of conditions. This
type of correlation is possible because, in NerveCenter, each state in a state diagram can look for a
different set of conditions. For instance, let’s look at a state diagram that NerveCenter uses to track
the status of a node and its SNMP agent. The diagram includes states for the following conditions:

� The node and its SNMP agent are up.

� The node is up, but its agent is down.

� The node is unreachable.

� The node is down.
Chapter 1, Understanding NerveCenter 7

How NerveCenter Manages Nodes
Figure 1-3. State Diagram for Determining Node Status

Note A more realistic state diagram for tracking the status of a node would include transitions
from the terminal problem states back to Ground.

Ground

Error

Unreachable Unknown Agent Down

Device Down

Net unreachable

Node unreachable

Node unreachable

Node unreachable

Net unreachable

Net unreachable

Port unreachable

Port unreachable

SNMP Timeout

SNMP Timeout

ICMP timeout

ICMP timeout ICMP timeout

Node up
8 Designing and Managing Behavior Models

How NerveCenter Manages Nodes
When checking the status of a node and its SNMP agent, NerveCenter begins by polling the node to
see if the node’s SNMP agent will return the value of the MIB attribute sysObjectID. If the agent
returns this value, the current state remains Ground. However, NerveCenter makes Error the
current state if:

� The node, or the network the node is on, is unreachable

� The node is reachable, but the SNMP agent doesn’t respond

Similarly, NerveCenter changes the current state to Unknown if it detects for a second time that the
node is unreachable or the node’s SNMP agent isn’t responding.

Once the current state becomes Unknown, though, NerveCenter begins looking for a different set
of conditions. NerveCenter checks to see whether the node will respond to an ICMP ping. If it will,
NerveCenter knows that the node is up, but its SNMP agent is down. If it receives another network-
or node-unreachable message, NerveCenter knows that the node is unreachable. And if the ping
times out, NerveCenter knows that the node is down.

This ability of different states to monitor different conditions gives you the ability to correlate
sequences of conditions. That is, a sequence of two SNMP timeouts followed by a Node up
indicates that the node is up but its agent is down. And a sequence of two Node unreachables
followed by an ICMP timeout indicates that the node is down.

Responding to Conditions

NerveCenter not only enables you to detect network and system problems, but is able to respond
automatically to the conditions it detects. To set up these automated responses, you associate
actions with state transitions.

The possible actions you can define are discussed in the following sections:

� Notification on page 10

� Logging on page 10

� Causing State Transitions on page 11

� Corrective Actions on page 11

� Action Router on page 12
Chapter 1, Understanding NerveCenter 9

How NerveCenter Manages Nodes
Notification

If a particular network or system condition requires the attention of an administrator, the best action
to take in response to that condition is to notify the appropriate person. NerveCenter lets you notify
administrators of events in the following ways:

� You can send an audible alarm (a beep) to workstations running the NerveCenter Client.

� You can send email to an administrator using either a Microsoft Exchange Server client or
SMTP mail.

� You can page an administrator.

� You can send information about a network or system condition to another NerveCenter server.
This capability is useful if you have a number of NerveCenter servers at different sites and
want these servers to forward information about important events to a central server.

� You can send information about a network or system condition to a network management
platform such as Micromuse’s Netcool/OMNIbus or Hewlett Packard’s OpenView Network
Node Manager. Administrators can then be notified of a problem found by NerveCenter using
the other management tool’s console.

For more information on integrating NerveCenter with other network management products,
see the section Role in Network Management Strategy on page 21.

Logging

If you want to keep a record of an event that takes place on your network, you must explicitly log
information about the event at the time it occurs. NerveCenter provides three actions that provide
for such logging:

� Log to File

� Log to Database (Windows only)

� EventLog

Log to File writes information about an event to a file. Log to Database writes information about an
event to the NerveCenter database. The EventLog action writes information about an event to an
event or system log.

When you assign a logging action to a behavior model, you have the choice of logging default data
or customizing what data you deem relevant. This saves disk space and streamlines information
used later for analysis and reporting.
10 Designing and Managing Behavior Models

How NerveCenter Manages Nodes
Causing State Transitions

In some behavior models, one alarm needs to cause a transition in another. The action that enables
such communication between alarms is called Fire Trigger. This action creates a NerveCenter
object called a trigger that can cause a state transition in the alarm from which it was fired or in
another alarm.

The Fire Trigger action also lets you specify a delay, so you can request that a trigger be fired in one
minute or five hours. This feature is especially useful when you’re looking for the persistence of a
condition. Let’s say that you want to look for three intervals of high traffic on an interface within a
two-minute period. When your poll detects the first instance of high traffic, and your alarm moves
out of the Ground state, you can fire a trigger with a two-minute delay that will return your alarm to
the Ground state—unless a second and third instance of high traffic are detected.

If a third instance of high traffic is detected, you should cancel the trigger you fired on a delayed
basis. You do this by adding the Clear Trigger action to the transition from the second high-traffic
state to the third.

NerveCenter also includes a Send Trap action. You define the trap to be sent, including the variable
bindings, and associate the action with a state transition. When the transition occurs, the trap is
sent. The trap can be caught by a NerveCenter trap mask—in which case you can use Send Trap
somewhat like Fire Trigger, to generate a trigger—or by any application that processes SNMP
traps.

Corrective Actions

There are a number of NerveCenter actions that you can use to take corrective actions when a
particular state transition occurs. These are:

� Command

� Perl Subroutine

� Set Attribute

� Delete Node

� SNMP Set

The Command action enables you to run any script or executable when a particular transition
occurs.

The Perl Subroutine action enables you to execute a Perl script as a state-transition action. You first
define a collection of Perl scripts and store them in the NerveCenter database; then, you choose one
of your stored scripts for execution during a state transition.

The Set Attribute action enables you to set selected attributes of the NerveCenter objects used to
build behavior models.
Chapter 1, Understanding NerveCenter 11

How NerveCenter Manages Nodes
The Delete Node action deletes the node associated with the current state machine from the
NerveCenter database. This action is useful if you use a behavior model to determine which nodes
you want to monitor and manage.

The SNMP Set alarm action changes the value of a MIB attribute when an alarm transition occurs.

Action Router

The Action Router enables you to specify actions that should be performed when a state transition
occurs and other conditions are met. To set up these conditional actions, you add the Action Router
action to your state transition. Then, you use the Action Router tool to define rules and their
associated actions.

For example, let’s assume that you want to be notified about a state transition only if the transition
puts the alarm in a critical state. You can define the following rule:

$DestStateSev eq ‘Critical’

Then define the action you want taken if the severity of the destination state is Critical, for
example, a page. You will be paged if:

� The Action Router action is associated with the current state transition

� The destination state for the transition is Critical

Action Router rules can be constructed using many variables that NerveCenter maintains; for
instance, you can also construct rules based on:

� The name of the alarm

� The day of the week

� The time of day

� The name or IP address or group property of the node being monitored

� The name of the trigger that caused the state transition

� The name of the alarm’s property

� The name or severity of the origin state

� The contents of a trap

� The contents of an IT/Operations message

� The contents of the varbind data associated with a trap or a poll
12 Designing and Managing Behavior Models

Main NerveCenter Components
Main NerveCenter Components
NerveCenter is a distributed client/server application and includes the following components:

� Server

� Database

� Clients

For information about these components, see the following sections:

� The NerveCenter Server on page 13

� The NerveCenter Database on page 13

� The NerveCenter User Interface on page 17

The NerveCenter Server

The NerveCenter Server is responsible for carrying out all of the major tasks that NerveCenter
performs. For example, it handles the polling of SNMP agents, creates NerveCenter objects such as
the finite alarms mentioned earlier, and makes sure that state transitions occur at the appropriate
times. The server also performs all actions associated with state transitions.

The server can run as a daemon on UNIX systems and as a service on Windows systems. This
capability to run in the background has important implications with regard to using NerveCenter at
remote sites. You can install the server and database at a remote office and have that server manage
the local network, yet control the server (via the NerveCenter Client) from a central location.
Servers located at remote sites can forward noteworthy information to a server at the central
location as required.

The NerveCenter Database

The NerveCenter database is primarily a repository for the NerveCenter objects that make up a set
of behavior models. The principal objects used in these models are:

� Nodes

� Property groups and properties

� Polls

� Trap masks

� Alarms

For brief explanations of what these objects are and how they are used, see Objects in the Database
on page 14.
Chapter 1, Understanding NerveCenter 13

Main NerveCenter Components
A set of objects that define many useful behavior models ships with NerveCenter and is available
as soon as you’ve installed the product. For a list of these predefined behavior models, see the
section Predefined Behavior Models on page 16.

On UNIX systems, the NerveCenter database is implemented as a flat file. On Windows systems,
the database can be either a Microsoft Access database or a Microsoft SQL Server database.

Objects in the Database

This section contains brief definitions of the basic objects used in the construction of behavior
models.

� Nodes

A node represents either a workstation or a network device, such as a router. Each node has an
attribute called its property group that controls which behavior models NerveCenter will
employ in managing the node.

Note Strictly speaking, a node is not part of a behavior model; rather, it is the entity managed by a
behavior model.

� Property groups and properties

As mentioned above, each node has a property group. This property group is simply a
container for a set of properties, which are strings that typically either describe the type of node
or name an object in the MIB used to manage the node. It is actually a node’s properties, rather
than its property group, that determine whether a particular behavior model will be used to
manage that node.

� Polls

A poll defines what MIB variables NerveCenter should request the values of, how those values
should be evaluated, and what action the poll should take. If the poll takes an action, it will be
to fire a trigger, which may cause a state transition in one of NerveCenter’s finite state
machines.

� Trap masks

A trap mask describes an SNMP trap and contains the name of a trigger. If NerveCenter
receives an SNMP trap that matches the description given in the trap mask, NerveCenter fires a
trigger with the name defined in the trap mask. If NerveCenter receives a trap that does not
match a trap mask, it discards that trap.

� Alarms

NerveCenter’s finite state machines are called alarms. Each alarm defines a set of operational
states (such as Normal and Down) and transitions between the states. Transitions are effected
by the receipt of the proper trigger and can have actions associated with them. If actions are
associated with a transition, the server performs these actions each time the transition takes
place.
14 Designing and Managing Behavior Models

Main NerveCenter Components
Behavior Models

Once a set of managed nodes has been defined, NerveCenter’s monitoring activities are controlled
by a set of behavior models. A behavior model is the group of NerveCenter objects required to
detect and take action upon a single network condition, such as high traffic on an interface.

The central object in each behavior model is a deterministic finite state machine called an alarm.
For instance, the alarm shown in Figure 1-4 tracks the level of traffic on an interface.

Figure 1-4. Alarm State Diagram

The possible states in this alarm are low, medium, and high. And these states have the severities
Normal, Medium, and High, respectively. (The color of each state denotes its severity.) The gray
rectangles in the alarm represent state transitions.

What about the inputs and outputs of the state machine? The inputs are called triggers and can
come from several sources. For example, one predefined NerveCenter poll queries the SNMP agent
on a device for the level of traffic on, and the capacity of, each interface on the device. If the level
of use exceeds a certain percentage of the capacity for an interface, the poll fires the trigger
mediumLoad, which can cause a state transition in an alarm.

The outputs of an alarm are called alarm actions. These actions are associated with the transition
from one state to another by the designer of a behavior model, and NerveCenter performs these
actions each time the transition occurs. There are many possible actions, including the following:

� Sending an audible alert to the workstation on which the NerveCenter Client is being run

� Executing a program or script

� Deleting a node from the NerveCenter database

� Informing a network management platform of a condition

� Logging information to a disk file

� Sending mail to an administrator

� Paging an administrator
Chapter 1, Understanding NerveCenter 15

Main NerveCenter Components
� Sending an SNMP trap

� Setting a MIB attribute

Predefined Behavior Models

When you install NerveCenter and create a new database, that database contains the objects that
make up a number of predefined behavior models. These include behavior models for:

� Detecting authentication failures

� Monitoring the error rate on network interfaces

� Monitoring link-up and link-down traps

� Monitoring the amount of traffic on network interfaces

� Indicating the status of network interfaces: up, down, and so on

� Detecting errors that inhibit accurate SNMP device management

� Determining whether a device is down, unreachable, up without an agent, or up with an agent

� Giving early warning concerning TCP connection saturation

� Verifying that the current TCP retransmission algorithm is the most efficient

� Categorizing devices based on TCP retransmission activity

� Logging information about SNMP traps

NerveCenter also includes predefined behavior models that you can import to monitor specific
vendors’ devices and additional models for troubleshooting, interface status, data collection, and
downstream alarm suppression. For more information about behavior models, see Behavior Models
and Their Components on page 27.
16 Designing and Managing Behavior Models

Main NerveCenter Components
The NerveCenter User Interface

The principal clients of the NerveCenter server are:

� The NerveCenter Administrator

� The NerveCenter Client

� The NerveCenter Web Client

� The NerveCenter command line interface

The NerveCenter Administrator is used to configure NerveCenter once it has been installed. The
NerveCenter Client and the NerveCenter Web Client are used to monitor a network for problems.
The NerveCenter Client is also used to create new behavior models. The command line interface
can be used to perform a limited number of operations on NerveCenter objects.

For additional information on these interfaces, see the following sections:

� The NerveCenter Administrator on page 18

� The NerveCenter Client on page 19

� The NerveCenter Web Client on page 20

� The Command Line Interface on page 20
Chapter 1, Understanding NerveCenter 17

Main NerveCenter Components
The NerveCenter Administrator

Figure 1-5 shows the graphical user interface (GUI) for the NerveCenter Administrator.

Figure 1-5. NerveCenter Administrator

Users with NerveCenter Administrator privileges can use this interface to:

� Configure NerveCenter’s discovery mechanism

� Configure the number of retries and the retry interval for SNMP polling

� Configure NerveCenter’s mail and paging actions

� Manage NerveCenter log files

� Configure NerveCenter to work with a network management platform
18 Designing and Managing Behavior Models

Main NerveCenter Components
The NerveCenter Client

The figure below shows the GUI for the NerveCenter Client.

Figure 1-6. NerveCenter Client

Two types of users run the NerveCenter Client. Users with NerveCenter User privileges can run the
client to:

� Monitor active alarms

� Filter alarms for the alarm summary windows

� View an alarm’s history

� Reset alarms

� Monitor the state of managed nodes

� Generate reports

For complete information on using the NerveCenter Client to perform the tasks listed above and
others, see the book Monitoring Your Network.

Users with NerveCenter Administrator privileges can perform all the tasks that users with User
privileges can. In addition, they can use the client to:

� Create new behavior models

� Customize the predefined behavior models

� Modify, copy, or delete any object in the NerveCenter database
Chapter 1, Understanding NerveCenter 19

Main NerveCenter Components
The NerveCenter Web Client

The following figure shows the GUI for the NerveCenter Web Client.

Figure 1-7. NerveCenter Web Client

The NerveCenter Web Client, unlike the NerveCenter Client, is meant to be used only for
monitoring a network, not for creating behavior models. It enables you to:

� Monitor active alarms

� View an alarm’s history

� Reset alarms

� Monitor the state of managed nodes

For complete information on using the NerveCenter Web Client to perform the tasks listed above
and others, see the book Monitoring Your Network.

The Command Line Interface

You can use NerveCenter’s command line interface (CLI) to delete, list, or set (enable or disable)
alarms, trap masks, nodes, and polls from a Windows Command Prompt or a UNIX shell. You can
also connect to, display the status of, and disconnect from NerveCenter servers using the CLI. You
can issue commands manually or from a script.
20 Designing and Managing Behavior Models

Role in Network Management Strategy
Role in Network Management Strategy
NerveCenter can play a variety of roles in an overall network management strategy. The role that
NerveCenter plays in your strategy depends largely on the size of your network and on what other
products you are using to manage your network and systems:

� If you are managing a small network, NerveCenter can be used as a standalone system. It can
discover the workstations and network devices on the network, detect and correlate network
conditions, respond automatically to conditions, and display in a window information about
active alarms. See the section Standalone Operation on page 22 for further information.

� For larger networks, multiple NerveCenters can be used in concert. For example, let’s say that
a company has a central site and three remote sites. Local NerveCenter systems could be set up
to manage the remote sites, and the local NerveCenter servers could forward important
information to the NerveCenter server at the central site. See the section Using Multiple
NerveCenter Servers on page 23 for further information.

� NerveCenter can be used in conjunction with a network management platform such as Hewlett
Packard OpenView Network Node Manager, Hewlett Packard OpenView IT/Operations, CA
Unicenter TNG, Tivoli TME, and Micromuse Netcool/OMNIbus which manages systems,
networks, intranets, and databases. NerveCenter can be configured to receive messages from
or send messages to these network management platforms. See the section Integration with
Network Management Platforms on page 24 for further information.

� NerveCenter is also tightly integrated with Hewlett Packard’s OpenView Network Node
Manager. In this situation, NerveCenter is responsible for SNMP trap handling, all polling
activity, event correlation, and automated responses to conditions. See the section Integration
with NMPs for Node Information on page 25 for further information.
Chapter 1, Understanding NerveCenter 21

Role in Network Management Strategy
Standalone Operation

At smaller sites, you can use NerveCenter alone for your network management tasks. As we’ve
seen, NerveCenter is very strong in the areas of event correlation and automated actions. In
addition, NerveCenter includes an alarm console, as shown in Figure 1-8.

Figure 1-8. NerveCenter’s Alarm Console

This console displays information about every current alarm instance. In addition, if you
double-click on a line in the event console, you are taken to an Alarm History window that displays
information about all of the alarm transitions that have occurred for the alarm instance you selected.

At small installations, no discovery mechanism is necessary; you can add nodes to NerveCenter
manually. At somewhat larger sites, however, such a mechanism is helpful, and NerveCenter
provides one in its Discovery behavior model.

22 Designing and Managing Behavior Models

Role in Network Management Strategy
Using Multiple NerveCenter Servers

Because one NerveCenter server can inform another NerveCenter server or management platform
of a network condition, it’s possible to set up NerveCenter servers at remote sites that notify a
centrally located NerveCenter server or management platform of the noteworthy network
conditions at those remote sites.

Figure 1-9. Distributed NerveCenter Servers

This is a reliable solution because the remote NerveCenter servers use TCP/IP to notify the
centrally located NerveCenter server of network conditions and retransmit messages as necessary
to ensure their delivery.

There are a couple of advantages to this type of setup:

� Only a small amount of data is transmitted over the WAN. Any bandwidth intensive
monitoring is conducted on a LAN and is managed by a remote NerveCenter server.

� The remote NerveCenter servers can be run in lights-out mode. Being able to run NerveCenter
lights-out means that:

� NerveCenter runs as a Windows service or as a UNIX daemon

� You can monitor and configure NerveCenter from a remote location

� You can modify all NerveCenter parameters without shutting NerveCenter down

� No display or operators are required at a site

� The central NerveCenter can further correlate and filter conditions across remote NerveCenter
Server domains

Central
site

NerveCenter client
and server

NerveCenter
server

NerveCenter
server

NerveCenter
server

Remote Site A Remote Site B Remote Site C
Chapter 1, Understanding NerveCenter 23

Role in Network Management Strategy
Integration with Network Management Platforms

A network management platform (NMP) is an operations and problem-management solution for
use in a distributed multi-vendor environment. Intelligent distributed agents on managed nodes
monitor system and application log files and SNMP data. The agents apply filters and thresholds to
monitored data and forward messages about conditions of interest to a central management station.
When the management station receives these messages, it can automatically take corrective
action—such as broadcasting a command to a set of systems—or an operator can initiate this
response.

You can integrate NerveCenter with the following network management platforms:

� CA Unicenter TNG

� Hewlett Packard OpenView IT/Operations

� Hewlett Packard OpenView Network Node Manager

� Micromuse Netcool/OMNIbus

� Tivoli Systems TME

Additionally, with OpenView Network Node Manager, you can direct NerveCenter to take its node
information from the management platform and configure NerveCenter to take over all polling
activity and event processing. See the later section, Integration with NMPs for Node Information on
page 25, for more information.

You can integrate your NerveCenter installation with the NMP so that the NMP can send messages
to NerveCenter for correlation or processing. After the messages arrive, NerveCenter correlates the
conditions described in these messages with related conditions—from the NMP or from other
sources—and can respond with any of its alarm actions, as appropriate. In addition, NerveCenter
can send a message to an NMP in response to any network condition, whether the condition was
originally detected by the NMP or not.

NMPs alone can detect a condition and invoke an action in response. However, you must integrate
the NMP with NerveCenter if you want to:

� Correlate conditions detected by the NMP on different devices

� Correlate different types of conditions detected by the NMP on the same device

� Correlate conditions detected by the NMP with other types of events or conditions on the same
device or across different devices

24 Designing and Managing Behavior Models

Role in Network Management Strategy
Integration with NMPs for Node Information

If you’re working at a larger site and need a topology map and more event history than
NerveCenter provides, you can use NerveCenter with Hewlett Packard’s OpenView Network Node
Manager.

When used with OpenView Network Node Manager, NerveCenter can take its node information
from the management platform and can be configured to take over all polling activity and event
processing. NerveCenter’s main task is to minimize the number of events that appear in the
platform’s event browser. NerveCenter does this by:

� Filtering out unimportant events

� Correlating related events and notifying the platform only of the underlying problem

� Handling problems through automated actions so that no notification is necessary

Figure 1-10 below shows an OpenView event browser that contains a flurry of events all caused by
the same problem. Figure 1-11 shows what might appear in the browser if NerveCenter were used
to screen and correlate the conditions and pass on only important information to the platform event
browser.

Figure 1-10. Too Many Events
Chapter 1, Understanding NerveCenter 25

Role in Network Management Strategy
Figure 1-11. The Important Events

NerveCenter can also set the colors of nodes in the network management platform’s map based on
the severity of NerveCenter alarm states.
26 Designing and Managing Behavior Models

2
Behavior Models and Their Components
Chapter 1, Understanding NerveCenter introduced behavior models and the objects from which
they’re built. This chapter explains how to approach the design of a behavior model, provides
detailed definitions of the NerveCenter objects used in building behavior models, and illustrates
how these objects interact. For information on these topics, see the sections listed in the table
below.

Section Description

Behavior Models on page 28 Explains the basic design of a behavior model and which
NerveCenter objects you use at each stage of the design.

NerveCenter Objects on page 31 Provides detailed information about the basic objects used
in the construction of behavior models.

Constructing Behavior Models on page 42 Explains and illustrates the relationships between the
objects in a behavior model.
27

Behavior Models
Behavior Models
For NerveCenter to detect a network condition or correlate network conditions, someone must
specify how NerveCenter is to detect and react to one or more conditions. Such a specification is
called a behavior model. Some behavior models ship with NerveCenter—these are called
predefined behavior models—and others you must write to handle site-specific conditions.

When writing a behavior model, you must answer the following questions:

� What condition or conditions do I want to detect?

Although NerveCenter can receive status information from a number of sources, the most
common source of such information is an SNMP agent on a managed node. Therefore, in most
cases, you must decide whether the behavior model will be poll driven or event driven. That is,
will you poll the agent’s MIB for status information, look for SNMP traps, or both?

NerveCenter provides two objects—polls and trap masks—that enable you to get information
from SNMP agents. For an overview of these objects, see the section Detecting Conditions on
page 29.

� What network conditions, or states, do I want to keep track of?

Each behavior model includes at least one alarm, and the definition of each alarm consists
primarily of a state diagram. For example, an alarm that tracks the status of a managed node’s
SNMP agent might have the following terminal states:

� Normal

� Device Unreachable

� Agent Down

� Device Down

The state of such an alarm changes as related polls and trap masks gather new information.

For an overview of alarms, see the section Tracking Conditions on page 29.

� What set of nodes do I want to manage?

A particular behavior model may not be intended for all managed devices. NerveCenter
enables you to specify the set of devices that a model will manage using the following objects:
nodes, property groups, and properties.

For an overview of the roles these objects play in a behavior model, see the section Monitoring
a Set of Nodes on page 30.
28 Designing and Managing Behavior Models

Behavior Models
Detecting Conditions

In the typical situation where your behavior model is either polling, or looking for a trap from, an
SNMP agent, you detect network conditions by creating polls and trap masks.

A poll contains a poll condition that refers to a single MIB base object. For example, the following
poll condition looks at an attribute of the ip base object (1.3.6.1.2.1.4):

if (ip.ipForwarding == 1) {
FireTrigger(“gatewayFound”);

}

When NerveCenter polls an agent on a device, NerveCenter evaluates the poll condition against
information stored in the agent’s MIB. In the case of the poll condition shown above, NerveCenter
would check the value of the ipForwarding attribute and compare it to 1. If the value of
ipForwarding is 1—indicating that the device is a gateway—the poll generates a trigger. In this
case, the trigger is gatewayFound. Every poll must be capable of generating at least one trigger.

A trap mask describes the contents of an SNMP trap. This description can be very general, such as
“generic trap 4.” Or it can be very specific and include an enterprise OID, a specific trap number,
and the contents of the trap’s variable bindings. In either case, if the NerveCenter server receives an
SNMP trap that matches the description given in a trap mask, that trap mask generates a trigger.
Like the triggers generated by polls, this trigger can affect the state of one or more alarms.

Tracking Conditions

NerveCenter tracks each detected network condition using one or more alarms. The scope of an
alarm is variable: an alarm can represent the state of an interface on a device, the device itself, or an
entire enterprise. Many instances of an alarm can exist simultaneously.

Each alarm is basically a finite state machine. It consists of a series of states and transitions
between the states. Each transition is initiated by one or more input events and can produce one or
more output events. This state machine is represented in NerveCenter by a state transition diagram.

For example, you could use the state diagram in Figure 2-1 to monitor the traffic on an interface.
Chapter 2, Behavior Models and Their Components 29

Behavior Models
Figure 2-1. Monitoring the Load on an Interface

In this diagram, the states are low, medium, and high, and the transitions are LowLoad,
MediumLoad, HighLoad, and HiLoadPersists. The initial state of the interface-traffic alarm is low.
The instantiation of an alarm instance and a transition to the medium state occur when the alarm
manager receives the trigger mediumLoad from a poll that is gathering information about an
interface. Note that the trigger name and the transition name are the same.

When a transition occurs, not only does the alarm’s state change, but NerveCenter can perform
actions. These actions are defined as part of the transition and can include such things as sending
e-mail to an administrator or notifying a network management platform that a condition has been
detected. For an overview of NerveCenter’s alarm actions, see the section Responding to
Conditions on page 9.

Monitoring a Set of Nodes

In addition to creating the polls, trap masks, and alarms that define how to detect a network
condition, track its severity, and respond to it, you must define which devices you want to monitor
for this condition. NerveCenter uses a simple mechanism, involving three types of objects, to
define this set of devices. The three types of objects are:

� Nodes

� Property groups

� Properties

Nodes represent workstations and network devices and contain property groups, which in turn
contain strings called properties. Polls and alarms are assigned properties. Given this situation,
NerveCenter can enforce the following rules:
30 Designing and Managing Behavior Models

NerveCenter Objects
� A poll can be sent to a particular node only if the node’s property group contains the poll’s
property.

� An alarm can be instantiated for a node only if the node’s property group contains the alarm’s
property.

For more detailed information about the NerveCenter objects used to construct behavior models,
see NerveCenter Objects on page 31.

NerveCenter Objects
The upcoming sections provide details about the data structures of the NerveCenter objects used in
the construction of behavior models. These sections not only list each object’s data members, but
explain how each member affects the way a behavior model functions (where appropriate). It’s
important to understand these details before you attempt to:

� Design a behavior model

� Create one these objects

The objects are discussed in the following sections:

� Nodes on page 32

� Property Groups and Properties on page 33

� Polls on page 34

� Trap Masks on page 36

� Alarms on page 38
Chapter 2, Behavior Models and Their Components 31

NerveCenter Objects
Nodes

In NerveCenter terminology, a node is either a workstation or a network device such as a router.
NerveCenter monitors and manages a set of nodes, and each behavior model manages a subset of
those nodes.

A node object has the data set shown in Table 2-1. The table explains what information these data
members contain and, where appropriate, how NerveCenter uses that information.

Note The names of the data members shown in Table 2-1 match the labels used in NerveCenter’s
Node Definition window, where you create and modify node objects.

Table 2-1. Definitions of Node Attributes

Node Attribute Definition

Name Contains the name of the workstation or network device. The name can be
a hostname or an IP address.

Read Community Contains the community name that NerveCenter will include in any
SNMP GetRequest or GetNextRequest it sends to the agent on this node.
By default, set to public.

Write Community Contains the community name that NerveCenter will include in any
SNMP SetRequest it sends to the agent on this node. By default, set to
public.

Group Contains the node’s property group. This property group helps determine
whether a particular poll will query this node and whether a particular
alarm will be instantiated for the node. For further information about
property groups, see the section Property Groups and Properties on
page 33.

The value of this attribute affects how this object interacts with other
objects in a behavior model.

Port Contains the number of the port that the node’s agent uses to receive
SNMP messages. By default, the port is set to 161.

IP Address List Contains the node’s IP address. If the node is multihomed, IP Address List
can contain a list of addresses.

Managed Boolean. Indicates whether NerveCenter is to manage the node. By
default, NerveCenter manages all nodes it or a network management
platform discovers. However, you can mark a node as unmanaged if you
do not want it to be affected by any NerveCenter behavior models.

The value of this attribute can disable the object.

Auto Delete Boolean. Used when NerveCenter is integrated with a network
management platform. If a node is removed from the platform’s database,
NerveCenter removes the node from its database if this attribute is set.
32 Designing and Managing Behavior Models

NerveCenter Objects
Property Groups and Properties

Another attribute of a node—one that requires a little explanation—is the node’s property group. A
property group is a list of properties, which are strings that generally name either an object in the
management information base (MIB) used to manage a node, or the role the node plays in the
network (such as “router”). These property strings can be:

� The name of a MIB base object

� A user-defined string

Figure 2-2. Property Groups and Properties

Property groups are assigned to nodes and control which nodes will be contacted by a particular
poll and which nodes can be monitored using a particular alarm. Both types of properties—MIB
base objects and user-defined strings—play a part in making these determinations.

Platform Boolean. Indicates whether a network management platform discovered
the node.

Suppressed Boolean. Indicates that the node is in a suppressed state. Suppressing a
node limits polling because if the node is suppressed and a related poll is
suppressible, that poll cannot cause an SNMP GetRequest to be sent to the
node.

The value of this attribute affects how this object interacts with other
objects in a behavior model.

Table 2-1. Definitions of Node Attributes (continued)

Node Attribute Definition

Routers “atEntry”

“ifEntry”

“interfaces”

“router”

Property group

Contains

Properties

MIB base objects

User-defined
string
Chapter 2, Behavior Models and Their Components 33

NerveCenter Objects
For example, NerveCenter ships with a predefined property group called Router. This property
group contains the following properties.

In this case, all the properties are MIB objects except “router,” which describes the type of the
device.

For the person who programs NerveCenter to monitor particular devices for specific error
conditions, the properties associated with each node are important. These properties allow the
programmer to define which devices NerveCenter should poll for MIB data and which error
conditions NerveCenter should look for on each device, among other things.

You can filter the nodes that you are monitoring based on their properties. For example, you might
choose to monitor only nodes that have been assigned the Router property group, that is, all routers.

Polls

A NerveCenter poll periodically sends an SNMP message to a set of nodes, requesting information
from the agents running on those nodes. When the poll receives this information from a node, it
uses the information in the evaluation of a poll condition, which may cause a trigger to be fired. For
example, a poll may fire a trigger if the number of discarded packets on an interface is too high.
The poll condition must be able to fire at least one trigger, and may be capable of firing several.
These triggers can cause alarms to be instantiated, to change states, or perform actions—under the
right circumstances.

The key attributes of a poll are listed in Table 2-2 This table explains what information these data
members contain and, where appropriate, how NerveCenter uses that information.

Note The names of the data members shown in Table 2-2 match the labels used in NerveCenter’s
Poll Definition window, where you create and modify poll objects.

� atEntry � ip � snmp

� egp � ipAddrEntry � system

� egpNeighEntry � ipNetToMediaEntry � tcp

� icmp � ipRouteEntry � tcpConnEntry

� ifEntry � nl-ping � udp

� interfaces � router � udpEntry

Table 2-2. Definitions of Poll Attributes

Data Member Definition

Name A unique name that you assign to the poll.
34 Designing and Managing Behavior Models

NerveCenter Objects
If a poll fires a trigger, that trigger has the attributes shown in Table 2-3.

Property The Property attribute is a string. This string determines (in part) whether
a poll will request MIB data from a particular node. Only if the node’s
property group contains the poll’s property can polling possibly occur.
However, before a poll will request information from a node’s SNMP
agent, other conditions must be satisfied as well. For further information,
see the explanation below for Poll Condition.

Port Optional. If you specify a port number here, NerveCenter will send the
poll to this port on the nodes that are configured to receive the poll.
Otherwise, NerveCenter will send the poll to the port specified in each
node’s definition.

Poll Rate The number of seconds, minutes, or hours between polls.

Enabled A poll’s enabled status (Off or On) is similar to a node’s Managed status.
That is, if a poll is disabled, it will never send a request to an SNMP agent.

Poll Condition The Poll Condition is a Perl script that can fire one or more triggers.
Which trigger is fired (if any) depends of what data the poll retrieves from
an SNMP agent. Generally, this data is used in evaluating an if statement.

This poll condition must be expressed in terms of one MIB base object.
For example, a valid condition would be:

if (delta(snmp.snmpInBadCommunityNames) >= 1 or
delta(snmp.snmpInBadCommunityUses) >= 1) {

FireTrigger(“AuthFail”);
}

In this case, the base object is snmp. The name of this base object must be
one of the properties in a node’s property group before the node can
receive a request from a poll with this poll condition.

Suppressible A poll’s Suppressible attribute works in conjunction with a node’s
Suppressed attribute. If a node is suppressed and a related poll is
suppressible, that poll will not query that node. If a poll is not
suppressible, then it will poll even a suppressed node. Generally, the only
polls that are insuppressible are those designed to determine when an
unresponsive node becomes responsive again. When a node becomes
responsive, the behavior model of which the poll is a part can change the
status of the node from suppressed to unsuppressed. (You set an attribute
of a node using the Set Attribute alarm action.)

Table 2-3. Definitions of Trigger Attributes

Data Member Definition

Name The name of the trigger, which is defined in the poll definition.

Table 2-2. Definitions of Poll Attributes (continued)

Data Member Definition
Chapter 2, Behavior Models and Their Components 35

NerveCenter Objects
A trigger’s Name, Node name/IP address, Subobject, and Property are all important when it comes
to determining what effect, if any, a trigger has on an alarm. You’ll find more on this subject in the
section Constructing Behavior Models on page 42.

Trap Masks

A trap mask filters SNMP traps that NerveCenter receives. Based on criteria that you specify, the
trap mask either filters out each trap or fires a trigger in response to it. A trigger fired by a mask is
exactly the same as a trigger fired by a poll except that a trap trigger contains the trap’s variable
binding list instead of the values of MIB attributes. (For further information about the trigger
object, see the section Polls on page 34.)

The principal attributes of a trap mask are shown in Table 2-4. The table explains what information
these data members contain and, where appropriate, how NerveCenter uses that information.

Note The names of the data members shown above match the labels used in NerveCenter’s Mask
Definition window, where you create and modify trap masks.

Node name/IP address The name or IP address of the node that responded to the poll and caused
the trigger to be fired.

Subobject In general, the Subobject has a value of the form BaseObject.Instance.
BaseObject is the name of the MIB base object that the poll inquired
about, and Instance is the unique identifier associated with a row of MIB
data returned by the poll. In most cases, Instance is the number
associated with a particular interface on the node. The subobject,
however, can also be an arbitrary string. The important thing is that
subobjects can be used to uniquely identify alarm instances so that
triggers can be directed to exactly the right alarm instance.

Property The Property, as always, is simply a string. A trigger fired by a poll does
not have a property, but as you’ll see later, other triggers do.

Variable bindings The trigger also contains the values of the MIB attributes referred to in the
Poll Condition. Each attribute and its value are called a variable
binding.

Table 2-3. Definitions of Trigger Attributes

Data Member Definition

Table 2-4. Definitions of Trap Mask Attributes

Attribute Definition

Name The name of the trap mask.
36 Designing and Managing Behavior Models

NerveCenter Objects
Generic The generic trap type is an enumeration constant indicating the nature of the
event being reported:

� 0—coldStart

� 1—warmStart

� 2—linkDown

� 3—linkUp

� 4—authenticationFailure

� 5—egpNeighborLoss

� 6—enterpriseSpecific

You supply a Specific trap number (see below) only if the generic trap type is
6.

From Indicates that the object identifier (OID) contained in the trap’s Enterprise field
must represent a branch in the MIB tree that is the same as, or subordinate to,
the branch represented by the contents of the trap mask’s Enterprise field.

From Only Indicates that the OID contained in the trap’s Enterprise field must match the
trap mask’s Enterprise attribute exactly.

Enterprise An OID (or name) representing the object referenced by the trap.

Specific A trap number supplied by the vendor of the product whose agent generated the
trap. The significance of the trap number is defined in an ASN.1 file provided
by the vendor.

Trigger Type Trigger Type can be set to either Simple Trigger or Trigger Function. See the
next two table entries for definitions of these trigger types.

Simple Trigger A simple trigger is one that will be fired whenever the trap mask sees a trap that
meets the criteria specified in the fields discussed above.

The value of this attribute affects how this object interacts with other objects in
a behavior model.

Trigger Function A trigger function is a Perl script that is called whenever the trap mask sees a
trap that meets the criteria specified in the fields discussed above. This function
typically looks at information in the trap’s variable bindings and fires a trigger
if a condition is fulfilled. The trigger function fires this trigger using
NerveCenter’s FireTrigger() function.

The value of this attribute affects how this object interacts with other objects in
a behavior model.

Enabled As with a poll, a trap that is disabled (Enabled is set to Off) is nonfunctional.

Table 2-4. Definitions of Trap Mask Attributes (continued)

Attribute Definition
Chapter 2, Behavior Models and Their Components 37

NerveCenter Objects
Alarms

As mentioned in the section Behavior Models on page 15, a NerveCenter alarm consists primarily
of a state diagram, which defines the alarm’s states, the transitions between states, and the alarm
actions to be performed when each transition takes place. This alarm definition is analogous to a
class in object-oriented programming. That is, the alarm itself does not monitor a network
condition; rather, an alarm instance (comparable to an object) is created to track such a condition.

For example, the section Behavior Models on page 15 showed the definition of an alarm designed
to monitor traffic on an interface.

Figure 2-3. Definition of the alarm IfLoad

If NerveCenter detects a medium or high level of traffic on an interface it is managing, it creates an
instance of this alarm to track the condition. If NerveCenter detects medium or high traffic on five
interfaces, it creates five instances of the alarm. Each instance of the alarm maintains such
information as:

� The instance’s current state

� The severity of that state

� The node the instance is monitoring

In addition, each alarm instance causes the appropriate alarm actions to take place when a state
transition occurs.

If five instances of IfLoad are created, how do you distinguish them? Depending on the scope of
the alarm, you might need to look at the instance’s node attribute or at both its node and subobject
attributes.
38 Designing and Managing Behavior Models

NerveCenter Objects
In NerveCenter, alarms can have one of four scopes: enterprise, instance, node, or subobject. Only
one instance of an enterprise-scope alarm can be created. This instance monitors a condition across
all managed nodes. For example, one alarm instance could cause an action to take place if three or
more routers in an enterprise are down at the same time.

A node-scope alarm monitors a single managed device for a condition. For instance, the alarm
SnmpStatus (shipped with NerveCenter) determines whether a device is in a normal state,
unreachable, down, or up but unable to respond to SNMP requests. An instance of this type of
alarm can be identified by its alarm name and the name of the node it is monitoring. This node
name is an attribute of the alarm instance.

A subobject-scope alarm most often monitors an interface on a device. For example, an instance of
the alarm IfLoad monitors each interface that is experiencing a medium to high level of traffic. This
type of instance can be identified by its alarm name, the name of the node it is monitoring, and the
name of the subobject being monitored. This subobject name is usually composed of the name of a
MIB table followed by an instance number. That is, if an instance of the IfLoad alarm is monitoring
port 2 on a device, its subobject attribute has the value ifEntry.2.

Instance scope alarms track instances for every interface or port that fits the polled condition
regardless of the base object. Instance scope is similar to Subobject scope but has the following
difference: Instance scope lets you monitor any instance for different base objects. This allows you
to track a variety of events for any managed subobject in a single alarm instance.

Alarm Scope

All NerveCenter alarms have a property called scope. This property can have one of four values:

� Subobject

� Instance

� Node

� Enterprise

If an alarm has Subobject scope, an instance of that alarm tracks activity on a component that can
be described using a nonzero MIB object instance, for example, an interface on a router.

Instance scope alarms track instances for every interface or port that fits the polled condition
regardless of the base object. Instance scope is similar to Subobject scope but has the following
difference: Instance scope lets you monitor any instance for different base objects. This allows you
to track a variety of events for any managed subobject in a single alarm instance.

If an alarm has Node scope, an instance of that alarm tracks activity on a single device. If an alarm
has Enterprise scope, an instance of that alarm tracks activity on all managed nodes.

Note It might be useful to think of an alarm instance as a copy of the alarm’s state diagram whose
current state is something other than Ground.
Chapter 2, Behavior Models and Their Components 39

NerveCenter Objects
Why is NerveCenter architected this way? Well, think about the following network management
problem: You want to be notified whenever four interfaces on a device experience high traffic.

Your first step in solving this problem might be to create a poll that detects high traffic on an
interface and fires the trigger highTraffic. You might then create an alarm with node scope and five
states, as shown in Figure 2-4.

Figure 2-4. Possible Alarm Diagram for Looking for High Traffic on Four Interfaces

Most likely, this alarm won’t detect the condition you’re looking for because all four transitions can
be effected if the poll repeatedly detects high traffic on a single port.

To solve your problem, the trigger highTraffic must cause one or more transitions in a subobject
scope alarm, and this alarm must fire a busyPort trigger (using the Fire Trigger alarm action) during
its final transition. Such an alarm is shown in Figure 2-5.

Figure 2-5. A Subobject Scope Alarm

When the high-traffic poll detects high traffic on an interface, a subobject scope alarm will be
instantiated, and the transition highTraffic will occur. During this transition, the alarm will fire a
trigger called busyPort. Note that once a subobject alarm instance transitions to the BusyPort state,

Ground TwoPortsHigh

highTraffic highTraffic highTraffic highTraffic

OnePortHigh ThreePortsHigh

FourPortsHigh

Ground highTraffic BusyPort

Action
Fire Trigger - busyPort
40 Designing and Managing Behavior Models

NerveCenter Objects
additional high-traffic triggers for the interface concerned have no effect. However, if the
high-traffic poll detects high traffic on other interfaces, new alarms will be instantiated and fire the
trigger busyPort. Each instance fires its own busyPort trigger.

Now a node scope alarm similar to the one shown in Figure 2-6 can be configured to receive up to
four busyPort triggers, each one from its own instance of the high traffic alarm. Each busyPort
trigger signals high traffic on a different interface.

Figure 2-6. Node Scope Alarm Detecting High Traffic from Four Alarm Instances

An instance scope alarm behaves in a similar manner as the subobject scope alarm. The main
difference between subobject and instance scope is that, with instance scope, you could add another
transition to the alarm to monitor a different base object than the one for high traffic. Then, the
alarm could be instantiated by the high-traffic poll and then transition again when an entirely
different condition (MIB object) is detected.

Ground TwoPortsHigh

busyPort busyPort busyPort busyPort

OnePortHigh ThreePortsHigh

FourPortsHigh
Chapter 2, Behavior Models and Their Components 41

Constructing Behavior Models
Constructing Behavior Models
Given the NerveCenter objects discussed in NerveCenter Objects on page 31, it’s possible to create
a behavior model, which can be defined as the set of NerveCenter objects required to deal with a
single network or system condition. Figure 2-7 shows a simple example of the objects that might
make up a behavior model.

Figure 2-7. A Behavior Model

The next two sections:

� Discuss in general how the various objects fit together to make a model

� Present an example of a behavior model

Contains

Property
Group

GetRequest

GetResponse Poll

Behavior model

Trigger

Alarm
Nodes
42 Designing and Managing Behavior Models

Constructing Behavior Models
How the Pieces Fit Together

Let’s first review how you define which managed nodes a behavior model will monitor and
manage. As Figure 2-8 shows, each node belongs to a property group, and that property group
contains properties.

Figure 2-8. Nodes, Property Groups, and Properties

Any set of nodes that share a unique property can be managed as a set of devices. (The nodes need
not be members of the same property group.) In the figure above, the tcp property might be that
unique property.

For a node to be pollable, the principal requirements are that:

� The poll’s property must be in the node’s property group.

� The base object around which the poll’s poll condition is built must be a property in the node’s
property group.

� The poll’s trigger must correspond to a pending alarm transition, and the alarm’s property must
be in the node’s property group.

Figure 2-9 shows the definition of a poll that has been designed to work with the node shown in
Figure 2-8.

Node Property group

tcp

Properties

atEntry

ifEntry

ipRouteEntry

tcp
Chapter 2, Behavior Models and Their Components 43

Constructing Behavior Models
Figure 2-9. Relationship Between Node and Poll

As you can see, the node’s property group, Mib-II, contains a property tcp that matches the poll’s
property and the base object used in the poll’s poll condition. Once this poll is enabled, the poll
TcpMedRetrans will poll the node, unless there is no alarm that the poll can affect or the node is
suppressed. (If the node is suppressed, no polling will occur because the poll is marked
suppressible.)

Note Since trap masks do not have properties, this type of matching is not necessary for masks.

If TcpMedRetrans polls the node, receives a response to its query, and that response satisfies the
poll condition, the poll will fire a trigger. If an alarm has been defined whose first transition is
tcpRetransMed (the poll’s trigger) and that alarm is enabled has the property tcp, a new instance of
that alarm will be instantiated to monitor the node. Because the alarm is instantiated using the
trigger’s Node and Subobject, the key attributes of the trigger and alarm will match, and the first
transition will be effected.

Once an alarm instance has been instantiated and has gone through one transition, the transitions
that can be effected from its current state determine which triggers affect the alarm. For example
consider the following alarm, TcpRetransMon.

Mib-II
atEntry
ifEntry
ipRouteEntry
.
.

.
tcp
44 Designing and Managing Behavior Models

Constructing Behavior Models
Figure 2-10. An Alarm: TcpRetransMon

When this alarm is first instantiated and the tcpRetransMed transition is made, the alarm transitions
to the tcpMedRtrans state, so two transitions are pending: tcpRetransNorm and tcpRetransHigh. If
NerveCenter sees a trigger with one of those names, and the trigger’s Node and Subobject match
those of the transition, the transition occurs.

An Example of a Behavior Model

This section presents an overview of the set of steps you would need to perform to create a behavior
model that monitors node interfaces. The possible interface conditions are link up and link down.

Note Don’t try to follow these directions. Just read over them to get an overview of the procedure.
Detailed procedures are available in following chapters.

1. Create a property group named CheckLink.

2. Add to this property group the properties ifEntry (base object) and
checkLink (user defined).

3. Assign the property group CheckLink to all of the managed nodes whose interfaces you want
to monitor.

4. Create two masks: LinkUp and LinkDown.
Chapter 2, Behavior Models and Their Components 45

Constructing Behavior Models
The values you use to create LinkUp are shown in the table below.

The definition for LinkDown is the same as the definition of LinkUp except for the name of the
mask and Generic SNMP trap number (LinkDown=2).

5. Create the alarm shown below.

Once this alarm is enabled, the behavior model will become functional.

The IfLinkUpDown alarm contains the property ifEntry, which is in the property group
CheckLink. Even though a trap mask filters all traps sent to NerveCenter, the IfLinkUpDown
alarm will only become instantiated when the SNMP agent sending the trap belongs to a node
in the CheckLink property group.

Here’s how the behavior model might interact with one port on a workstation that belongs to the
property group:

1. The mask LinkDown will cause a transition to the DownTrap state, as well as start a
three-minute timer (linkTimer).

2. If the agent comes back up, then the alarm transitions back to Ground and the timer is cleared.

3. If three minutes has past, and the interface remains down, then the alarm transitions to
LinkDown, and sends a 7004 Inform to the network management platform.

Table 2-5. Values Needed to Create LinkUp

Attribute Value

Name LinkUp

Generic LinkUp=3

Trigger Type Simple Trigger

Enabled On
46 Designing and Managing Behavior Models

3
NerveCenter Support for SNMP v3
SNMP version 3 is an extension of SNMP that addresses security and administration. The
following topics describe how NerveCenter provides support for SNMP v3. You can find other
topics related to SNMP v3—for example, changing the SNMP version for a node—in the section
Configuring SNMP Settings for Nodes on page 107.

Section Description

Overview of NerveCenter SNMP
v3 Support on page 48

Summarizes NerveCenter support for SNMP v3 and points to where you
can find information about specific settings and requirements.

SNMP v3 Operations Log on
page 51

Describes the Operations Log that records SNMP v3 operations and errors
that occur while attempting to perform those operations.

SNMP Error Status on page 56 Describes SNMP v3 error status messages and indicates which ones cause
polling to stop for a node.

Using the SNMP Test Version
Poll on page 58

Explains how to use the V3 Test Poll to verify communication with an
SNMP v3 agent.
47

Overview of NerveCenter SNMP v3 Support
Overview of NerveCenter SNMP v3 Support
NerveCenter support for SNMP v2c (community-based SNMP v2) and v3 includes new data types
and enhanced security for communication. SNMP v1 and v2c rely on community names for
authentication. SNMP v3 enhances authentication and expands its services to include privacy.
SNMP v3 expands on the earlier concept of MIB views to control access to management
information. SNMP v3 uses a View-based Access Control Model (VACM) to determine the level of
access a user has for viewing MIB data.

Following are highlights of NerveCenter support for SNMP v2c/v3:

� Before NerveCenter can discover SNMP v3 agents on nodes, the nodes must have an initial
user configured for discovery.

For details, refer to the book Managing NerveCenter.

See Using the SNMP Test Version Poll on page 58 for information about testing
communication with a node.

� NerveCenter communicates (sends polls) with an SNMP v3 agent on behalf of a specified
NerveCenter user in a defined context. Before NerveCenter can poll SNMP v3 agents, the
agents must be configured to support the NerveCenter user and context. By default, the user
name is NCUser and the context is NCContext, though you can change both in NerveCenter.

For details, refer to the book Managing NerveCenter.

� NerveCenter supports three security levels for communicating with SNMP v3 agents. By
default, NerveCenter sets the security level to noAuthNoPriv, which means the v3 agent sends
and receives messages without authentication or encryption.

See Changing the Security Level of an SNMP v3 Node on page 110.

See NerveCenter support for SNMP v3 security for details about security.

� The authentication and privacy protocols require specialized keys, called authentication and
privacy keys. These keys are generated from corresponding passwords. You can change these
passwords in NerveCenter, thereby changing the keys. When changing keys in NerveCenter,
you can command NerveCenter to update the key changes on all nodes.

See NerveCenter Support for SNMP v3 Digest Keys and Passwords on page 50.

Refer to the book Managing NerveCenter for details about changing SNMP v3 keys and
passwords.

� NerveCenter supports either HMAC-MD5-96 (MD5) or HMAC-SHA-96 (SHA) as
authentication protocol on a per-node basis and CBC-DES as the privacy protocol. The default
authentication protocol for NerveCenter is MD5. If you change the authentication protocol on
an SNMP v3 agent, you must likewise change the protocol used by NerveCenter to manage the
corresponding node in its database.

See Changing the Authentication Protocol for an SNMP v3 Node on page 112.
48 Designing and Managing Behavior Models

Overview of NerveCenter SNMP v3 Support
� A node must have SNMP version information before NerveCenter can poll the node or process
a trap from the node. NerveCenter can discover the version of a node automatically or
manually. If auto-classification is enabled, then a newly added node (discovered from a trap,
added from a platform such as HP OpenView, imported from another NerveCenter) will be
classified at the highest level possible.

Note Auto-classification is disabled when you install NerveCenter. You must enable this feature
before NerveCenter can classify nodes added to its database.

See Classifying the SNMP Version Configured on Nodes on page 114.

Refer to the book Managing NerveCenter for details about auto-classification.

� The trap source specified during installation can be changed to MSTrap, OVTrapD or
NerveCenter. Changing the trap source requires stopping and starting the related applications
(e.g., OVTrapD) and restarting the NerveCenter Server.

Refer to the book Managing NerveCenter for details about changing the trap source.

� SNMP v3 operations are logged to a file so that you can follow the progress of v3 activities.
The log includes information about activities (e.g., a key change initiated by the user) as well
as errors that occur while NerveCenter attempts to perform the activities.

See SNMP v3 Operations Log on page 51.

See SNMP v3 error status for information about SNMP v3 errors.

� NerveCenter ships with behavior models that provide the status of various applications
monitored by the SNMP Research CIAgent.

For complete details about these and all behavior models, refer to the Behavior Models
Cookbook.

NerveCenter Support for SNMP v3 Security

SNMP v3 specifications enable any two devices to communicate in a completely secure fashion
using message authentication to validate users and encryption to ensure the secrecy of the
communication. SNMP v3 provides a User-based Security Model (USM) to establish
authentication and secrecy.

NerveCenter supports three security levels for communicating with an SNMP v3 agent:

� NoAuth/NoPriv: Passwords for authorization and privacy are not required to communicate
with the agent. NerveCenter still requires the user name and context for polling.

� Auth/NoPriv: The authorization protocol and password are required to communicate with the
agent. NerveCenter requires the user name, context, and authentication password for polling.

� Auth/Priv: All security parameters are required to communicate with the agent. NerveCenter
requires the user name, context, and the privacy and authentication passwords for polling.
Chapter 3, NerveCenter Support for SNMP v3 49

Overview of NerveCenter SNMP v3 Support
Communication between any two SNMP v3 entities takes place on behalf of a uniquely identified
user within the management domain. The security level used for this communication defines the
kind of security services—message authentication and encryption—used while exchanging data.
NerveCenter communicates with SNMP v3 nodes on behalf of the NerveCenter poll user in the poll
context. By default, the user name is NCUser and the context is NCContext, though you can change
both in NerveCenter.

If you do not specify a security level for an SNMP v3 node, NerveCenter uses a default security
level of NoAuthNoPriv, which means that message authentication and encryption services are not
used for data exchange with the node. You can later change the security level in NerveCenter.

Note The NerveCenter poll user, context, authentication password, and privacy password can be
changed in NerveCenter Administrator. If you change the passwords, you can update this
information on all nodes directly from the NerveCenter Administrator.

The security level used by NerveCenter while polling SNMP v3 nodes is configured for each
node in NerveCenter Client. Information specific to nodes, such as version, security level,
and authentication protocol, are entered in NerveCenter Client for the node.

NerveCenter Support for SNMP v3 Digest Keys and Passwords

SNMPv3 protocols allow any two devices to communicate in a completely secure fashion using
message authentication and message encryption to ensure the secrecy of the communication. In any
SNMP v3 communication, one of the two communicating entities plays a role of authoritative
entity for the communication, and communication is performed on behalf of a unique user within
the management domain.

The sender of a secure message attaches a code, called a digest, for authentication and encrypts the
message to ensure privacy. To generate this digest, the sender uses an authentication key at the
authoritative entity of the user on whose behalf communication takes place. Similarly, to encrypt a
message, the sender uses a privacy key at the authoritative entity of the user on whose behalf
communication takes place. These keys are generated from the authentication password and
privacy password, respectively, for the user.

SNMP v3 specifications have defined a localized key-generation scheme. For every user, the
authentication key at every SNMP v3 entity is a function of the snmpEngineID of that entity, the
user’s authentication password, and the authentication protocol. For every user, the privacy key at
every SNMP v3 entity is a function of the snmpEngineID of that entity, the user’s privacy
password, and the privacy protocol. NerveCenter supports this localized key-generation scheme.

NerveCenter communicates with SNMP v3 nodes on behalf of the NerveCenter poll user (by
default, NCUser for MD5 authentication and NCUserSHA1 for SHA-1 authentication) in the poll
context (NCContext by default). NerveCenter needs to know the authentication and privacy
passwords for this user in order to generate the keys required for secure communication. Whenever
NerveCenter learns the snmpEngineID of a newly discovered SNMP v3 agent with a security level
other than NoAuthNoPriv, NerveCenter generates these keys for the NerveCenter poll user on that
50 Designing and Managing Behavior Models

SNMP v3 Operations Log
agent. By default, the passwords are NCUserAuthPwd (authentication) and NCUserPrivPwd
(privacy), though you can change both in NerveCenter Administrator. These passwords are used for
all nodes that NerveCenter manages.

When the message is sent, if authentication is required (a security level of AuthNoPriv is specified
for the node), the sender uses the authentication key to generate the digest for the message. This
digest is appended to the message.

If encryption is required (a security level of AuthPriv is specified for the node), the sender uses the
privacy key to generate the digest for the message. For this security level, only the privacy digest is
required; privacy assumes authentication, and you cannot have encryption without authentication.

On receipt of a secure message, a receiver does the following

� Separates the message from the digest (authentication or privacy).

� Uses the corresponding key available in its local store to generate its local copy of the digest
from the message.

� Compares the two digests (i.e. one received in the message and one generated locally). If both
digests are the same, the recipient authenticates or decrypts the message using the
corresponding local key. If the digests are not the same (indicating a lack of authentication),
the recipient discards the message.

� The recipient reads and processes the message.

SNMP v3 Operations Log
Whenever a NerveCenter Server receives a request for an SNMP v3 operation (e.g. authorization or
privacy key change request) or an error occurs while attempting to perform an SNMP v3 operation
(e.g. v3 initialization fails), the NerveCenter Server logs a message to a file. This log file, named
v3messages.log, resides in the NerveCenter installation log directory on the NerveCenter Server
host machine. The file contains messages about SNMP v3 operations and errors resulting from
requests that originate with any connected NerveCenter Clients, Administrators, and Command
Line interfaces.

When an error occurs after attempting to perform an SNMP v3 operation, aside from logging the
error in the log file, the NerveCenter Server notifies all connected NerveCenter Clients and
Administrators in the following ways:

� If you are logged on to the NerveCenter Client or Administrator that initiated the operation that
caused an error condition, NerveCenter displays a dialog box with the error that is logged.

� If you are logged on to some other NerveCenter Client or Administrator (one that did not
initiate the error condition), you see a red icon in the status bar. When you double-click the
icon, a dialog box displays the NerveCenter Server with the SNMP v3 error. If your Client or
Administrator is connected to more than one Server, the dialog box lists all servers that
currently have an error condition.
Chapter 3, NerveCenter Support for SNMP v3 51

SNMP v3 Operations Log
When your NerveCenter Client or Administrator displays a dialog box with an error condition, you
can do either of the following:

� Acknowledge the error condition by “signing the log.” When you sign the log, NerveCenter
notes this fact in the log file and changes the red icon to green for all connected Clients and
Administrators.

� Dismiss the dialog box without acknowledging the error condition. If you merely dismiss the
dialog box, only the icon in your Client or Administrator turns green. For all other connected
Clients and Administrators, the icon remains red and signals to those modules that the
NerveCenter Server has some error that remains unacknowledged, or unsigned. Moreover, the
Server does not indicate acknowledgment in the log file.

If the SNMP v3 operation affects a group of nodes (e.g., version change or classification failure),
you will see only one instance for the group displayed in the error message dialog box. To see
details for each node, you can look in the log file.

You must have administrator rights to initiate an SNMP v3 operation that can result in an error or to
acknowledge a logged error condition. If you are logged on with only user rights, you can dismiss
the error dialog box but not acknowledge an error condition.

Whether you acknowledge or dismiss the error, all messages remain in the v3messages.log for you
to read.

For more information, refer to the following topics:

� Signing a Log for SNMP v3 Errors Associated with Your Client on page 53

� Signing a Log for SNMP v3 Errors Associated with a Remote Client or Administrator on
page 54

� Viewing the SNMP v3 Operations Log on page 55
52 Designing and Managing Behavior Models

SNMP v3 Operations Log
Signing a Log for SNMP v3 Errors Associated with Your Client

Whenever an SNMP v3 operation is requested or an error occurs while attempting an SNMP v3
operation, the NerveCenter Server logs a message to a file. If you are logged in to the NerveCenter
Client that initiated the request causing a logged condition, NerveCenter displays a dialog box with
the error that is logged.

Figure 3-1. Operations Log Error in Server Dialog Box for Your Client

Users with administrator rights can acknowledge a logged condition from NerveCenter Client by
signing the Operations log. Signing the log causes the icon to turn green in all connected
Clients/Administrators.

You can also dismiss the dialog box without acknowledging the error condition. If you are logged
on with user rights rather than administrator rights, your only option is to dismiss the dialog box;
you cannot sign the Operations log.

� To sign the Operations log:

1. After viewing the message that NerveCenter displays on your screen, check the Sign the log
and dismiss errors checkbox.

2. Select OK.

The icon in the Status Bar turns green for all Clients or Administrators connected to the
designated NerveCenter Server. You can later view this message again in the Operations log.
This file, named v3messages.log, resides in the NerveCenter installation log directory. The file
can be viewed in a text editor or word processor.

� To dismiss the Error in Server dialog box:

� Select OK without checking the checkbox.

In this case, only the icon in your Client turns green. For all other connected Clients and
Administrators, the icon remains red and signals to those modules that the NerveCenter Server
has some error that remains unacknowledged.
Chapter 3, NerveCenter Support for SNMP v3 53

SNMP v3 Operations Log
Signing a Log for SNMP v3 Errors Associated with a Remote Client or
Administrator

Whenever an error occurs while attempting an SNMP v3 operation, the NerveCenter Server logs a
message to a file. If you are logged on to some remote NerveCenter Client (one that did not initiate
the error condition), you see a red icon in the status bar.

Users with administrator rights can acknowledge a logged condition from NerveCenter Client by
signing the Operations log. Signing the log causes the icon to turn green in all connected
Clients/Administrators.

You can also dismiss the dialog box without acknowledging the error condition. If you are logged
on with user rights rather than administrator rights, your only option is to dismiss the dialog box;
you cannot sign the Operations log.

� To sign the Operations log:

1. Double-click the red icon in the Status Bar.

The Error In Server dialog box is displayed.

Figure 3-2. Error in Server Dialog Box for a Remote Client/Administrato

2. Check the NerveCenter Server or Servers for which you want to sign the log.

3. Select OK.

The icon in the Status Bar turns green for all Clients or Administrators connected to the servers
you checked. At a suitable time, you can open the Operations log and view the new message.
This file, named v3messages.log, resides in the NerveCenter installation log directory. The file
can be viewed in a text editor or word processor.
54 Designing and Managing Behavior Models

SNMP v3 Operations Log
� To dismiss the Error in Server dialog box:

1. Double-click the red icon in the Status Bar.

The Error In Server dialog box is displayed.

2. Select OK without checking any of the checkboxes.

In this case, only the icon in your Client turns green. For all other connected Clients and
Administrators, the icon remains red and signals to those modules that the NerveCenter Server
has some error that remains unacknowledged.

Viewing the SNMP v3 Operations Log

Whenever an SNMP v3 operation is requested or an error occurs while attempting the operation,
the NerveCenter Server logs a message to a file. This log file, named v3messages.log, resides in the
NerveCenter installation log directory on the NerveCenter Server host machine.

The file can be viewed in a text editor or word processor. As NerveCenter adds more messages to
the file, the file continues to grow until you manually remove old messages.

The log entries resemble the following:

06/20/2000 09:26:29 Tue - Event ID : NC_SERVER; Category ID :
NC_THREAD_V3OP;Error Status : AutoClassifyFail; Error while
communicationg using SNMPv1 for 10.52.174.51 because of :
NC_PORT_UNREACHABLE;

Following are the fields in the log:

Table 3-1. Fields in the Operations Log

Field Description

Date/Time Date and time the record was logged. The format is month/day/year,
hour/minute/second, and day (for example, 12/16/2000 11:32:29 Sat).

EventID This always NC_SERVER.

CategoryID Name of the thread where the event occurred.

Error Status One of several error status strings. See SNMP Error Status on page 56 for a
description of SNMP v3 error status messages and which ones cause polling to
stop for a node.

Error Description Details of the error or operation.
Chapter 3, NerveCenter Support for SNMP v3 55

SNMP Error Status
SNMP Error Status
When NerveCenter is unable to complete an SNMP operation on a node, the error status is
displayed in the Node List (NerveCenter Client and Web Client) and in the SNMP tab of the node’s
definition window (NerveCenter Client).

The following illustration shows the Node List window in the Client.

Figure 3-3. Node List Window

Though most of the error strings correspond to SNMP v3 errors, some are applicable for v1 and v2c
errors as well. These are noted in the descriptions below.

Sometimes error conditions can be corrected simply by running the SNMP Test Version poll.
Others may require configuration changes to the node's SNMP agent. After changing the
configuration of an SNMP agent, always test communication with the node in NerveCenter Client
prior to polling the node.

Note For information about the Test Version poll, see Using the SNMP Test Version Poll on
page 58.

The following list describes each possible SNMP error status.

� AuthKeyFail – The change for the authentication key failed. Polling will not happen for nodes
with this error. You must rectify the problem manually on the agent and use the Test Version
poll to verify NerveCenter communication with this node.

� PrivKeyFail – The change for the privacy key failed. Polling will not happen for nodes with
this error. You must rectify the problem manually on the agent and use the Test Version poll to
verify NerveCenter communication with this node.

� AuthPrivKeyFail – Change for both the authentication and privacy keys failed. Polling will
not happen for nodes with this error. You must rectify the problem manually on the agent and
use the Test Version poll to verify NerveCenter communication with this node.
56 Designing and Managing Behavior Models

SNMP Error Status
� V3InitFail – An attempt to get the engine ID failed and NerveCenter could not initialize the
node. Polling will not happen for this node. You can try running the Test Version poll, which
attempts to get the engine ID for this node again. Alternatively, if the node sends a trap that
NerveCenter can decode, NerveCenter will then get the engine ID from that trap.

� ClassifyFail – At attempt to obtain the node’s version failed during a classification attempt.
The version will be “Unknown” for this node and polling will not happen. You can manually
change the version or try to classify the node again.

� AutoClassifyFail – At attempt to obtain the node’s version failed during a classification
attempt while NerveCenter was using auto-classification. The version will be “Unknown” for
this node and polling will not happen. You can manually change the version or try to classify
the node again.

Note ClassifyFail and AutoClassifyFail status values are not limited to SNMP v3 agents. If
NerveCenter attempts classification of an agent and the classification attempt fails for some
reason (e.g., the agent is down), NerveCenter will mark the node with ClassifyFail or
AutoClassifyFail regardless of the SNMP version supported on the agent.

� TestVersionFail – At attempt to poll the SNMP agent failed. The Test Version poll sends a
GetRequest message for a node based on the SNMP version configured for that node.

If the Test Version poll fails, polling will not happen for this node. In that case, you may need
to reconfigure the agent on this node. Then, try running the Test Version poll again (from a
node’s definition window or the right-click menu in the node list).

Note TestVersionFail is not limited to SNMP v3 agents. You can test the version of any SNMP
agent with this feature.

� Configuration Mismatch – Indicates an SNMP trap was received but there is some problem
with the configuration on the agent. If NerveCenter is unable to decode a trap due to some
unspecified reason (e.g., unsupported authentication or privacy parameters on the agent, or an
incorrect NerveCenter user name), NerveCenter can receive the trap and add the node to its
database if NerveCenter is configured to discover nodes via traps. After adding the node to its
database, however, NerveCenter assigns an error status of Configuration Mismatch.

Note Any error that occurs during the decoding of traps always results in a Configuration
Mismatch error message.

� TimeSyncFail – An attempt to get the engine boots/timeticks failed for the node. Polling will
continue for this node. If any polls successfully reach the node, the node responds with an “Out
of time window” report PDU that contains the correct boots/timeticks, and NerveCenter can
then update this information for the node. For the initial polls that generate the report PDU, the
SNMP_NOT_IN_TIME_WINDOW trigger will be fired.
Chapter 3, NerveCenter Support for SNMP v3 57

Using the SNMP Test Version Poll
You can ignore this message, which simply indicates that NerveCenter is getting in sync with
that node. Moreover, it is easy to recover from this error status. Right-click the node in the
Node List and select v3TestPoll. If the agent corresponding to the node is up, the test poll
should be successful and NerveCenter will clear the error message.

NerveCenter will not poll any nodes whose error status is one of the following:

� AuthKeyFail

� PrivKeyFail

� AuthPrivKeyFail

� TestVersionFail

� V3InitFail

� ClassifyFail

Using the SNMP Test Version Poll
When configuring an SNMP agent or if you encounter problems polling a node, you can test
whether NerveCenter can communicate with the agent. NerveCenter provides an SNMP test poll
that verifies communication with the node using the SNMP version specified for the node. If the
agent is configured for SNMP v3, this poll helps you determine whether the agent is correctly
configured for communication with NerveCenter.

If the poll fails to establish a connection for the specified SNMP version, a TestVersionFail error is
displayed for the node, and polling will not happen for this node.

Testing SNMP v1 and v2c Agents

To test the agent on a node configured in NerveCenter with SNMP version 1 or 2c, the Test Version
poll sends the agent an SNMP GetRequest for the system description. This operation is similar to
the GetRequest issued by clicking the Get button on the Query Node tab of a node’s definition
window.

Testing SNMP v3 Agents

To test the agent on a node configured in NerveCenter with SNMP v3, the Test Version poll issues
GetRequest messages for the following:

� Engine ID for a node

� Boots/timeticks if the security level on the node is either AuthNoPriv or AuthPriv

� SysObjectID for the node
58 Designing and Managing Behavior Models

Using the SNMP Test Version Poll
To establish communication, NerveCenter sends a GetRequest for the node’s sysobjectID. Before
sending this GetRequest, however, NerveCenter first requires engine information such as engineID,
engine boots, and time ticks. If this information is not known to NerveCenter, NerveCenter must
send a request to the agent.

NerveCenter must obtain engine information in the following cases:

� When the SNMPv3 node has an 'v3InitFail' error status. This status indicates that the engineID
for that node is not available to NerveCenter.

� NerveCenter first obtains the engine ID. Then, if the security level for the node is other than
NoAuthNoPriv, NerveCenter obtains the boots and time ticks.

� When the SNMPv3 node has an error status of 'TimeSyncFail.' This status indicates that the
engine boots and time ticks for that node are not available to NerveCenter.

� When someone has changed the Authentication and Privacy passwords in NerveCenter
Administrator but did not update the passwords on the SNMP v3 agent.

You must change the passwords on the agent and run the V3TestPoll to restore proper
communication.

After obtaining the engine information, NerveCenter can send the SysObjectID request.
Chapter 3, NerveCenter Support for SNMP v3 59

Using the SNMP Test Version Poll
How To Use the Test Version Poll

Follow the steps below to verify communication with a node using the Test Version poll.

� To use the SNMP Test Version poll:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

Figure 3-4. Node List Window

2. Right-click one or more nodes you want to test, then select Test Version.

Tip You can also issue this poll for a particular node by selecting the node in the list, clicking the
Open button, and selecting Test Version in the SNMP tab.

The Status Bar indicates the status of the test. If the test fails to establish a connection for the
specified SNMP version, a TestVersionFail error is displayed for the node.
60 Designing and Managing Behavior Models

4
 Getting Started with NerveCenter Client
Before you can begin monitoring your network using the NerveCenter Client, you must start the
client and then establish a connection between the client and one or more NerveCenter servers. You
may also want to set up alarm filters to control which alarm instances the NerveCenter Client will
display information about.

For instructions on how to perform these and related tasks, see the sections listed below:

Section Description

Starting the Client on page 62 Describes how to start the NerveCenter Client.

Connecting to a Server on
page 63

Explains how to log on to one or more NerveCenter Servers, discusses the
various server connection options, and describes how to select an active
server.

Setting Up Alarm-Instance Filters
on page 73

Provides instructions for setting up alarm viewing preferences. You can
request that the alarm instances from the servers you’re connected to be
filtered by: IP range, severity, or property group.

Specifying Heartbeat Messaging
on page 90

Explains heartbeat messaging: how to set message intervals and how to
deactivate heartbeat messaging.

Disconnecting from a Server on
page 93

Describes how to log off the NerveCenter Server.
61

Starting the Client
Starting the Client
The NerveCenter Client enables you to monitor current alarm instances, view an alarm’s history,
reset an alarm, and monitor the status of nodes.

� To start the client:

� If you’re working on a UNIX system, from a terminal window, enter the command:

client &

If you receive the error message client: Command not found, NerveCenter has not been
installed in the default location (/opt/OSInc). In this case, you must change directories to the
NerveCenter bin directory before entering the command shown above, or enter the full
pathname of the executable.

Note Before you can run NerveCenter, you must first set the necessary UNIX environment
variables by running the appropriate ncenv shell script. For more information about setting
environment variables, refer to the book Managing NerveCenter.

� If you’re working on a Windows system, start the client using the Start menu. If the person
who installed NerveCenter selected the default program folder, NerveCenter, select the
following set of menu entries: From the Start menu, select Programs, then OpenService
NerveCenter, then Client.

If the installer used a program folder other than Open NerveCenter, select Client from that
folder instead.

After you perform this step, you see the client window shown in Figure 4-1.
62 Designing and Managing Behavior Models

Connecting to a Server
Figure 4-1. NerveCenter Client

Most of the buttons on the button bar and the options on the menus are not enabled until you
connect the client to a NerveCenter server.

Connecting to a Server
Before you can use the client, you must connect the client to a NerveCenter server. This server
collects data from managed devices, creates alarm instances, and performs the actions defined in
alarms. The server also gives the client access to information about alarm instances and the status
of nodes.

You can connect your client to more than one server at one time and view information about all the
active alarm instances being managed by those servers. However, only one server can be the active
server. The active server determines which NerveCenter database is used when you ask for a list of
polls or the definition of an alarm.

For information on how to establish a connection with a NerveCenter server, see the following
subsections:

� Connecting to a Server Manually on page 64

� Connecting to a Server Automatically on page 67

� Sharing MIB Information from Multiple Servers on page 69

You may also be interested in the following topics, which relate to connecting to a server:

� Selecting the Active Server on page 70

� Deleting a Server from the Server List on page 71

� Changing the Client’s Server Port on page 72
Chapter 4, Getting Started with NerveCenter Client 63

Connecting to a Server
Connecting to a Server Manually

If you haven’t configured the client to connect to one or more servers at startup, or if you want to
establish a connection with a server that you don’t typically use, you must establish your
connection with the server manually.

� To connect to a NerveCenter server manually:

1. From the Server menu, select Connect.

The Connect to Server window displays.

2. In the Server Name field, type the hostname or IP address of the machine where the
NerveCenter server is running. Or choose a hostname or IP address from the Server Name
drop-down list.

The first time you connect to a server, the drop-down list is empty. After that, it contains a list
of the machines to which you’ve connected, or attempted to connect, in the past. (The list
won’t display the names of machines to which you’re already connected.) For information on
removing an entry from the drop-down list box, see the section Deleting a Server from the
Server List on page 71.

3. Type a user name and password in the User ID and Password fields, or leave these fields
blank.

If you’re running the client on a Windows system and you want to connect to a NerveCenter
server using the same user name and password you used to log in to Windows, you can leave
these fields blank. Otherwise, you must enter a user name and password. The user whose name
you enter here must be a member of the NerveCenter Users or NerveCenter Admins group
(Windows) or the ncusers or ncadmins group (UNIX).

4. Select the Connect button.

If the machine to which you try to connect is not running the NerveCenter server, you see the
message The server did not respond.

When the client successfully connects to the server, all of the buttons in the button bar become
enabled, and the Aggregate Alarm Summary window appears.
64 Designing and Managing Behavior Models

Connecting to a Server
Figure 4-2. Client Connected to a Server

Table 4-1 lists the client windows you can reach by using the buttons in the client’s toolbar.

Table 4-1. Windows Accessible from Toolbar

Button Window

Opens the Connect to Server window. From this window, you can connect the client to a
NerveCenter server.

Opens a Client message window containing the prompt Disconnecting from
Hostname. Use this window to confirm that you want to disconnect the client from a
NerveCenter server.

Opens the Property Group List window. From this window, you can view the currently
defined property groups and the properties that each property group contains.

Opens the Node List window. From this window, you can view a list of the nodes defined
in the NerveCenter database and a brief definition of each node.

Opens the Poll List window. From this window, you can view a list of the polls defined in
the NerveCenter database and a brief definition of each poll.

Opens the Mask List window. From this window, you can view a list of the trap masks
defined in the NerveCenter database and a brief definition of each trap mask.

Opens the Alarm Definition List window. From this window, you can view a list of the
alarms defined in the NerveCenter database and open a definition window for each
alarm.

Displays a list of currently defined correlation expressions. Correlation expressions
enable you to create alarms from boolean expressions.
Chapter 4, Getting Started with NerveCenter Client 65

Connecting to a Server
Opens the Severity List window. From this window, you can view a list of the severities
defined in the NerveCenter database. (A severity has a name, a severity level, and a color
associated with it.)

Opens the Perl Subroutine List window. From this window, you can view a list of the
currently defined Perl subroutines.

Opens the Report List window. From this window, you can view a list of reports.

Opens the Action Router Rule List window. From this window, you can view a list of the
current set of rules that you have defined for the Action Router.

Opens the Import Objects and Nodes dialog. From this dialog, you can import behavior
models from one NerveCenter to another.

Opens the Export Objects and Nodes dialog. From this dialog, you can export specific
objects or groups of objects from one database to another.

Opens the Server Status dialog. This dialog provides you with a comprehensive view of
all your NerveCenter server settings.

Opens the Alarm Summary window. This window presents information about the current
alarm instances for the active server.

Opens the Aggregate Summary window. This window presents information about the
current alarm instances for all the servers to which you’re connected.

Table 4-1. Windows Accessible from Toolbar (continued)

Button Window
66 Designing and Managing Behavior Models

Connecting to a Server
Connecting to a Server Automatically

If you want to establish a connection with the same set of servers each time you run the client, you
can use NerveCenter’s Autoconnect feature.

Tip Before you activate the Autoconnect feature, you might want to manually connect to the
NerveCenter Server, to verify that you can indeed access the server.

� To set up a list of servers to which you’ll connect at startup:

1. From the client’s Client menu, choose Configuration.

The Client Configuration dialog displays.

2. Enter the hostname or IP address of the server to which you want to connect in the Server
Name field.

3. Generally, you’ll leave the default value in the Server Port field.

However, if the administrator who configured the server you want to connect to has changed
the server port to be used for client/server communication, you must enter the new port number
here. The NerveCenter Client uses this same port number for every NerveCenter Server to
which it attempts to connect.
Chapter 4, Getting Started with NerveCenter Client 67

Connecting to a Server
4. Check the Autoconnect checkbox.

5. Type a user name and password in the User ID and Password fields, or leave these fields
blank.

If you’re running the client on a Windows machine and you want to connect to a NerveCenter
server using the same user name and password you used to log in to Windows, you can leave
these fields blank. Otherwise, you must enter a user name and password. The user whose name
you enter here must be a member of the NerveCenter Users or NerveCenter Admins group
(Windows) or the ncusers or ncadmins group (UNIX).

On UNIX, if you have activated Autoconnect and your password changes, you must manually
update your password in the Client Configuration dialog box for the Autoconnect feature to
work. For the Autoconnect feature, NerveCenter does not update your password automatically.

6. Select the Add button.

The server’s name and automatic-connection status are displayed in the list near the bottom of
the window.

7. Repeat step 2 through step 6 for each server you want to connect to automatically.

8. Select the OK button.

When you restart and log on to the client, you will be connected to the servers that have an
Autoconnect status of On. Alternatively, you can connect, or reconnect, to these servers by
selecting Autoconnect from the client’s Server menu.
68 Designing and Managing Behavior Models

Connecting to a Server
Sharing MIB Information from Multiple Servers

The NerveCenter Client needs a copy of the same MIB file that a NerveCenter Server uses to
provide MIB base objects and attributes. If you intend to connect to multiple servers that use the
same MIB file, you can direct NerveCenter to share MIB information. When you use this option,
the NerveCenter Client saves only the MIB information sent to it by the first connected server.

For more information about MIBs, refer to the manual Managing NerveCenter.

� To share MIB information:

1. Disconnect from any connected servers.

2. From the client’s Client menu, choose Configuration.

The Client Configuration dialog is displayed.

3. Select the Share MIB checkbox.

4. Select the OK button.
Chapter 4, Getting Started with NerveCenter Client 69

Connecting to a Server
Selecting the Active Server

The active server is the one whose database you can read data from. That is, you have access to this
server’s alarm definitions, poll definitions, and so on. You can view alarm instances for any number
of servers at the same time.

� To make a particular server the active server:

1. Display the server drop-down list on the client’s button bar.

Figure 4-3. Server Drop-Down List

2. Select from the list the name of the server you want to make the active server.

The name of the active server appears in the drop-down list box.

70 Designing and Managing Behavior Models

Connecting to a Server
Deleting a Server from the Server List

NerveCenter maintains a list of servers that a client has connected to, or attempted to connect to, in
the past. This list is used in the Connect to Server window, which you use to establish a connection
to a server manually, and it also appears in the Client Configuration window. This list may contain
the names of servers that you will never connect to again, or, even worse, the misspelled names of
servers you were unable to connect to because of a misspelling.

� To delete the name of a server from the server list:

1. From the client’s Client menu, select Configuration.

NerveCenter’s Client Configuration window is displayed.

2. In the Server List near the bottom of the window, select the server name you want to remove
from the server list.

3. Select the Delete button.

4. Select the OK button.

Chapter 4, Getting Started with NerveCenter Client 71

Connecting to a Server
Changing the Client’s Server Port

Each NerveCenter server uses a special port on its host for client/server communication. By
default, servers use port 32504; however, the person who configures the NerveCenter server can
change the number of this communication port if port 32504 is being used by another application.
If this number is changed on the server side, you must make a corresponding change on the client
side before you will be able to connect to the server.

� To change the client’s server port:

1. From the client’s Client menu, choose Configuration.

The Client Configuration window is displayed.

2. In the Server List near the bottom of the window, select the name of the server that uses the
non-default port number.

Connection information for that server is displayed.

3. Type the new port number in the Server Port text field.

4. Select the OK button.

72 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
Setting Up Alarm-Instance Filters
Before or after you’ve connected to the servers from which you want to retrieve alarm instances,
you can set up one or more alarm-instance filters, per server. These filters control which alarm
instances are displayed in the NerveCenter Client. You can filter alarm instances by:

� The IP address of the instance’s node

� The severity of the instance’s state

� The property group associated with the instance’s node

If you filter alarm instances by a severity, only instances whose states have this severity will be
displayed in the client. Filters based on property groups and IP address ranges work similarly.

A single filter can contain any combination of:

� A list of subnets

� A list of severities

� A list of property groups

These filters offer two advantages. First, they limit the number of alarm instances that will show up
in the client, enabling you to focus your attention on the alarm instances that are specifically of
interest to you. Using filters also improves the performance of the client, since NerveCenter only
transfers to the client those alarm instances that match the filter criteria.

For information on how to build an alarm-instance filter and on how to associate a filter with a
server, see the sections listed below:

� Filtering Alarms by IP Range on page 74

� Filtering Alarms by Severity on page 80

� Filtering Alarms by Property Groups on page 84

� Associating a Filter with a Server on page 87

� Rules for Associating Filters with Alarms on page 89
Chapter 4, Getting Started with NerveCenter Client 73

Setting Up Alarm-Instance Filters
Filtering Alarms by IP Range

When you filter alarms by IP range, you are specifying that you only want to display alarm
instances in the NerveCenter Client from particular nodes identified by their IP addresses.

See IP Subnet Filter Exclusion Rules on page 76, for more information about filtering alarms by IP
ranges.

Although you can create a filter simply based on an IP range, a single filter can contain any
combination of:

� A list of subnets

� A list of severities

� A list of property groups

For information on how to build an alarm-instance filter based on severities and property groups,
see the respective section listed below:

� Filtering Alarms by Severity on page 80

� Filtering Alarms by Property Groups on page 84

� To create an alarm filter based on an IP range:

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.
74 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
2. Select the Alarm Filter Modification tab.

The Alarm Filter Modification page is displayed.

3. Select the New button.

The Alarm Filter Definition dialog is displayed.
Chapter 4, Getting Started with NerveCenter Client 75

Setting Up Alarm-Instance Filters
This is the dialog you use to define your filter.

4. If you want to filter alarm instances based on the IP addresses of the alarm instances’ nodes,
perform the steps below for each subnet you want to be part of the filter. That is, you want to
see information about instances whose nodes have IP addresses on these subnets.

a. Enter an IP address in the Subnet text field.

The IP address must consist of four octets separated by periods.

b. Enter a subnet mask in the Mask text field.

The subnet mask must consist of four octets separated by periods. Taken together with the
subnet address, this mask defines the subnet whose nodes you’re monitoring.

c. In the Exclusion text field, enter the last octet of the IP address of any node on the subnet
that you’re not monitoring.

You can enter multiple exclusions separated by commas. You can also enter a range of
excluded nodes using a hyphen. For example, if you enter 24, 76-78 in the Exclusion field,
the nodes whose addresses end in 24, 76, 77, and 78 will be excluded by the filter.

d. Select the Add button.

e. Repeat step a to step d to add other subnets to the alarm filter.

5. Enter a name for your filter in the Filter Name field.

6. Select the OK button.

The Alarm Filter Definition dialog is closed and you return to the Client Configuration dialog
box.

You’ve now defined an alarm filter based on an IP range. Before the client will use the filter,
however, you must associate the filter with a server. For instructions on how to create this
association, see the section Associating a Filter with a Server on page 87.

IP Subnet Filter Exclusion Rules

When you filter by subnet, you specify which subsets of nodes are managed by NerveCenter.
Filtering does not apply to nodes that have been imported from a file or from another NerveCenter.
For an example, see IP Subnet Filter Examples on page 78.

You can exclude specific nodes that belong to the filter by entering an exclusion. To exclude one or
more nodes, you must specify the full subnet and mask, and then enter the individual nodes you
want excluded. Enter the part of the IP address that is not affected by the subnet’s mask.

NerveCenter filters Class B and C networks.
76 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
Class C Networks

In a Class C network, the first three octets of the address specify the network and the last octet
specifies the host. For example, in network 194.123.45.0, the 194.123.45 value pertains to the
network. The remaining octet is used to identify nodes (up to 254) on the network, and you can
exclude nodes by specifying ID values in this octet.

Class B Networks

For a Class B network, only the first two octets of the address specify the network. For example, in
network 132.45.0.0, the 132.45 value pertains to the network. The remaining two octets are used to
identify nodes, and you can exclude nodes by specifying ID values in these two octets.

Example

In the following example, the node whose IP address is 134.204.179.40 is excluded from the filter
(the node is filtered out and, therefore, is not managed by NerveCenter).

134.204.179.0
255.255.255.0
40

Rules for Exclusions

� You can enter several nodes separated by a comma. NerveCenter accepts comma-separated
values with or without spaces following the commas. You can enter the node values in any
order.

The following three examples (each on a separate line) illustrate valid exclusions:

7,8,9,15
7, 8, 9, 15
8,7,9,15

� You can enter a range of values using a hyphen.

For example, you can enter as an exclusion range: 40-60

You can also enter the range in inverse order: 60-40

� You can include multiple entries for the same subnet if you have values or ranges that are not
incremental.

� For example, you can enter as a filter:
134.204.179.0
255.255.255.0
7,8,9
134.204.179.0
255.255.255.0
40-60
Chapter 4, Getting Started with NerveCenter Client 77

Setting Up Alarm-Instance Filters
134.204.179.0
255.255.255.0
70-90

� You can combine ranges, for example:
134.204.179.0
255.255.255.0
40-60,70-90

� You can also combine formats, for example:
134.204.179.0
255.255.255.0
7-9,31,33,40-60

IP Subnet Filter Examples

The following examples can help you understand how to filter nodes for Class B and C networks.

Class C Network

The following subnet filters are for two sample nodes:

� Sample node #1 with IP address: 197.204.179.25

� Sample node #2 with two IP addresses:

� 134.204.179.40

� 197.204.179.7

The filter values in Table 4-2have the following effects on the sample nodes:

Table 4-2. Class C Network Examples

Subnet Mask Exclusion Results of Filter

134.204.179.0

255.255.255.0

This filter does not contain any exclusions.

Node #1 is not on this subnet and is not included in the filter or managed by
NerveCenter.

Node #2 is included in the filter because it’s on the subnet.

134.204.179.0

255.255.255.0

25,40

Node #1 is not on this subnet and is not included in the filter.

Node #2 is listed as an exclusion and is not included in the filter.

197.204.179.0

255.255.255.0

7-20

Node #1 is included.

Node #2 is not included because it’s listed in the exclusion range.
78 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
Class B Filters

The following subnet filters are for two sample nodes:

� Sample node #1 with IP address: 132.45.160.10

� Sample node #2 with IP address: 132.45.174.10

The mask you use for this filter is 255.255.0.0.

If you use a subnet mask of 255.255.240.0, you would get different results.

� Sample node #1 with IP address: 132.45.160.10

� Sample node #2 with IP address: 132.45.174.10

197.204.179.0

255.255.255.0

7-20

134.204.179.0

255.255.255.0

40

Node #1 is included in the first subnet.

Node #2 is not included because it’s listed as an exclusion on both subnets.

197.204.179.0

255.255.255.0

25,40

Node #1 is not included because it’s listed as an exclusion.

Node #2 is included.

Table 4-3. Class B Filter Examples (Set One)

Subnet Mask Exclusion Results of Filter

132.45.0.0

255.255.0.0

Both nodes are included in the filter and managed by NerveCenter.

132.45.0.0

255.255.0.0

174.10

Node #1 is included in the filter.

Node #2 is excluded from the filter. The filter includes all nodes except
132.45.174.10.

132.45.0.0

255.255.0.0

160.10-174.5

Node #1 is listed in the exclusion range and is excluded from the filter.

Note #2 is included in the filter.

132.45.0.0

255.255.0.0

10

Both nodes are excluded from the filter and, therefore, neither node is
managed by NerveCenter. The filter includes all nodes except 132.45.xxx.10,
where xxx can be any value greater than 1 and less than 255.

Table 4-2. Class C Network Examples

Subnet Mask Exclusion Results of Filter
Chapter 4, Getting Started with NerveCenter Client 79

Setting Up Alarm-Instance Filters
You must first apply the filter before determining the node’s ID. The filter values in the table below
have the following effects:

Filtering Alarms by Severity

When you filter alarms by severity, you are specifying that you only want to display alarm
instances in the NerveCenter Client from particular nodes identified by the severity of the alarm
instance’s state.

Although you can create a filter simply based on severity, a single filter can contain any
combination of:

� A list of subnets

� A list of severities

� A list of property groups

For information on how to build an alarm-instance filter based on IP range and property groups, see
the respective section listed below:

� Filtering Alarms by IP Range on page 74

� Filtering Alarms by Property Groups on page 84

Table 4-4. Class B Filter Examples (Set Two)

Subnet Mask Exclusion Results of Filter

132.45.160.0

255.255.240.0

174.10

The node is not included in the filter. The filter includes all nodes except
132.45.174.10.

132.45.160.0

255.255.240.0

10

Neither node is included in the filter. The filter includes all nodes except those
ending in .10. The third octet of an excluded node can be 174 or any value
between 160 and 174.
80 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
� To create an alarm filter based on severity:

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. Select the Alarm Filter Modification tab.
Chapter 4, Getting Started with NerveCenter Client 81

Setting Up Alarm-Instance Filters
The Alarm Filter Modification page is displayed.

3. Select the New button.

The Alarm Filter Definition dialog is displayed.

This is the dialog you use to define your filter.
82 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
4. Select the Severity tab.

The Severity tab is displayed.

5. In the Available Severities list, for each severity you want to use in your filter, select the
severity and then select the >> button. That is, you want to see information about alarm
instances whose states have these severities.

The severities in this list box are the union of the severities defined by all of the servers to
which you’re connected. Optionally, you can also add a user-defined severity to the list of
severities to filter by entering a severity in the And User-specified Severity text box, and
then selecting the >> button.

The name of the severity is moved to the Selected Severities list. Information about alarm
instances with this severity will be displayed in the alarm summary views.

To remove a severity from the Selected Severities list, select the severity and then select the
<< button.

6. Enter a name for your filter in the Filter Name field.

7. Select the OK button.

The Alarm Filter Definition dialog is closed and you return to the Client Configuration dialog
box.

You’ve now defined an alarm filter based on severity. Before the client will use the filter, however,
you must associate the filter with a server. For instructions on how to create this association, see the
section Associating a Filter with a Server on page 87.
Chapter 4, Getting Started with NerveCenter Client 83

Setting Up Alarm-Instance Filters
Filtering Alarms by Property Groups

When you filter alarms by property groups, you are specifying that you only want to display alarm
instances in the NerveCenter Client from particular nodes belonging to one or more property
groups.

Although you can create a filter simply based on membership within a property group, a single
filter can contain any combination of:

� A list of subnets

� A list of severities

� A list of property groups

For information on how to build an alarm-instance filter based on an IP range and severities, see the
respective section listed below:

� Filtering Alarms by IP Range on page 74

� Filtering Alarms by Severity on page 80

� To create an alarm filter based on property groups:

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.
84 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
2. Select the Alarm Filter Modification tab.

The Alarm Filter Modification tab is displayed.

3. Select the New button.

The Alarm Filter Definition dialog is displayed.

This is the dialog you use to define your filter.
Chapter 4, Getting Started with NerveCenter Client 85

Setting Up Alarm-Instance Filters
4. Select the Property Group tab.

The Property Group tab is displayed.

5. In the Available Property Groups list, for each property group of each alarm instance’s node,
perform the steps below for each property group you want to be part of the filter. That is, you
want to see information about instances whose nodes belong to these property groups.

The property groups in this list box are the union of the property groups defined by all of the
servers to which you’re connected.

The name of the property group is moved to the Selected Property Groups list. Information
about alarm instances with this property will be displayed in the alarm summary views.
Optionally, you can also add a user-defined property group to the list of properties to filter by
entering a property group in the And User-specified Property Group text box, and then
selecting the >> button.

To remove a property group from the Selected Properties list, select the property group and
then select the << button.

6. Enter a name for your filter in the Filter Name field.

7. Select the OK button.

The Alarm Filter Definition dialog is closed and you return to the Client Configuration dialog
box.

You’ve now defined an alarm filter based on property groups. Before the client will use the filter,
however, you must associate the filter with a server. For instructions on how to create this
association, see the section Associating a Filter with a Server on page 87.
86 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
Associating a Filter with a Server

When you define an alarm filter, that filter is not used to filter alarm instances from all connected
servers. It is only used to filter alarm instances from a server with which you have explicitly
associated it.

� To associate an alarm filter with a NerveCenter server:

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. Select a server from the list of servers at the bottom of the dialog.

The name of the server appears in the Server Name text field in the Connection Information
group box. This is the server with which you will associate your alarm filter.

3. Select the Alarm Filter Selection tab.
Chapter 4, Getting Started with NerveCenter Client 87

Setting Up Alarm-Instance Filters
The Alarm Filter Selection page is displayed.

4. Select a filter from the Available Filters list.

This is the filter you want to associate with the server you selected in step 2.

5. Select the >> button to move the filter from the Available Filters list to the Selected Filters
list.

To remove a filter from the Selected Filters list, select the filter and then select the << button.

6. Select the OK button at the bottom of the dialog.
88 Designing and Managing Behavior Models

Setting Up Alarm-Instance Filters
Rules for Associating Filters with Alarms

When deciding whether to apply multiple filters to your alarms, you should keep in mind the
following general rules:

� Multiple filters are ORed together

� Multiple conditions in a single filter are ANDed together

Multiple Filters are ORed Together

When you select more than one filter for a server, each filter is independent of the other filters.
Their behavior is equivalent to a logical OR operation.

For example, say you associate two filters with a NerveCenter Server. The two filters are defined as
follows:

� Filter #1 is configured to display only those alarms that have a severity level of Critical.

� Filter #2 is configured to display only those alarms coming from the network 132.168.196.0.

When both filters are applied to a server, you see the following alarms:

� Alarms with a Critical severity level from all existing networks defined for the server.

� From the network 132.168.196.0, you see all alarms regardless of severity.

Multiple Conditions in a Single Filter are ANDed Together

If, instead of the above view, you want to limit your alarms to Critical instances coming from the
network 132.168.196.0, you need to create one filter with both of those conditions. You would
create one filter that:

� Specifies a severity level of Critical, and

� Specifies an IP range of 132.168.196.0.

With this filter applied to the server, you see only those alarms that have a Critical severity level
and that come from network 132.168.196.0. One filter with multiple conditions is equivalent to a
logical AND operation; each condition is ANDed with the other conditions for optimum filtering.
Chapter 4, Getting Started with NerveCenter Client 89

Specifying Heartbeat Messaging
Specifying Heartbeat Messaging
The NerveCenter Client sends a message called a heartbeat to each connected NerveCenter Server
on a standard interval. This messaging ensures the reliability of communications between the server
and client. If a server fails to respond after three consecutive heartbeat messages from the client, a
message box is displayed on the client console to alert the operator of the server’s heartbeat failure.
(In such cases, you should check with your network administrator to obtain the status of that
particular NerveCenter Server.)

You can set the interval at which the NerveCenter Client sends a heartbeat to the NerveCenter
Server. (By default, this interval is 30 seconds.) You can also choose to deactivate heartbeat
messaging.

See the following sections for more information:

� Modifying the Heartbeat Message Interval on page 91

� Deactivating Heartbeat Messaging on page 92

90 Designing and Managing Behavior Models

Specifying Heartbeat Messaging
Modifying the Heartbeat Message Interval

You can change the interval NerveCenter Client uses to send heartbeat messages to verify its
connection with your NerveCenter Servers.

� To modify the heartbeat message interval:

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. In the Heartbeat Configuration panel, make sure the Heartbeat checkbox is checked. If it’s
not checked, heartbeat messaging is turned off.

3. In the Retry Interval field, enter the number of seconds you want NerveCenter Client to wait
between heartbeat messages. The default is 30 seconds. (The number of retries is three.)

Note When you modify heartbeat messaging, it applies to all NerveCenter Servers to which this
client connects.

4. Select the OK button.

Chapter 4, Getting Started with NerveCenter Client 91

Specifying Heartbeat Messaging
Deactivating Heartbeat Messaging

The NerveCenter Client sends heartbeat messages on an interval that you specify (or by default,
every 30 seconds) to verify its connection with your NerveCenter Servers. If you choose, you can
deactivate (or activate) heartbeat messages going to and from all your connected servers.

� To deactivate heartbeat messages:

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. In the Heartbeat Configuration panel, uncheck the Heartbeat checkbox.

Note If there is no check mark in this checkbox, heartbeat messaging has already been deactivated
for NerveCenter Client. When you activate or deactivate heartbeat messaging, it applies to
all NerveCenter Servers to which this client connects.

3. Select the OK button.

Heartbeat deactivation takes effect the next time you connect NerveCenter Client to one or
more of your NerveCenter Servers.

92 Designing and Managing Behavior Models

Disconnecting from a Server
Disconnecting from a Server
When you exit the client, all connections to NerveCenter servers are broken. However, you may
also want to disconnect the client from a server without stopping the client.

� To disconnect the client from a server:

1. From the server drop-down list on the client’s button bar, select the server with which you want
to break the connection.

2. From the client’s Server menu, choose Disconnect.

You see a pop-up window that asks you to confirm that you want to disconnect from the
selected server.

3. Select the OK button.

Chapter 4, Getting Started with NerveCenter Client 93

Disconnecting from a Server
94 Designing and Managing Behavior Models

5
Discovering and Defining Nodes
Before NerveCenter can manage a set of devices, a set of node definitions must reside in the
NerveCenter database. There are two ways to enter these definitions into the NerveCenter database:

� By using a discovery mechanism. Both network management platforms and NerveCenter itself
have the ability to explore a network and discover what devices are on the network.
NerveCenter can use the information gleaned during this discovery process to create a set of
node definitions.

� By defining the nodes manually using the NerveCenter GUI.

Generally, if you’re managing a network of any size, you’ll use a discovery mechanism to gather
information about the devices on your networks. Defining nodes manually is appropriate only if
you have a very small network or if you want to add to your database some nodes that were not
found during the discovery process (perhaps because they were on a subnet that the discovery
program did not explore).

For further information on these two methods of adding node definitions to the NerveCenter
database, see the following sections:

Section Description

Discovering Nodes on page 96 Explains how to add node definitions to the NerveCenter database using a
discovery mechanism, such as that provided by HP OpenView Network
Node Manager or by NerveCenter.

Defining Nodes Manually on
page 104

Explains how to add node definitions to the NerveCenter database
manually using the NerveCenter graphical user interface.
95

Discovering Nodes
Discovering Nodes
Generally, you add node definitions to the NerveCenter database using a discovery program. The
two most common scenarios are listed below:

� You are using NerveCenter with a network management platform such as Hewlett Packard’s
OpenView Network Node Manager, and you use the platform’s discovery mechanism to
explore the network and write node definitions to the platform’s database. You then define the
machine on which the platform is running as NerveCenter’s node source. This action causes
NerveCenter to copy the node definitions in the platform’s database to its own database. The
node information in NerveCenter’s database is updated whenever the node information in the
platform’s database changes, for example, if a node is added to or deleted from the platform’s
database or if a node’s attributes are changed.

� You are using NerveCenter in standalone mode, and you use NerveCenter’s IPSweep behavior
model to explore the network and write node definitions to NerveCenter’s database.

There are also other, less common, scenarios. For example, you may be using NerveCenter with a
network management platform, but NerveCenter may be set up at a remote site and the platform
may be running at a central site. In this case, it may make sense to have NerveCenter discover the
remote network and forward the node information it gathers to the platform. NerveCenter can then
retrieve node definitions from the platform as in the first case mentioned above.

In any of these situations, you may only want information about nodes on particular subnets. This
type of filtering is easy to do with NerveCenter; however, it must be set up from the NerveCenter
Administrator. For information on how to perform this task, see the book Integrating NerveCenter
with a Network Management Platform.

For more detailed information about discovering nodes, see the following sections:

� Using a Network Management Platform’s Discovery Mechanism on page 97

� Using NerveCenter’s IPSweep Behavior Model on page 98
96 Designing and Managing Behavior Models

Discovering Nodes
Using a Network Management Platform’s Discovery Mechanism

The most common method of writing node definitions to the NerveCenter database is to copy them
from a network management platform’s database. NerveCenter can be configured to received node
information from Hewlett Packard OpenView Network Node Manager.

To use OpenView to collect node information, you perform these steps:

1. You use the platform’s discovery mechanism to explore your network and write node
definitions to the platform’s database.

2. You specify in NerveCenter your node source (the machine on which your platform’s database
is located) and a set of filters. Using these filters, you can request that a node be copied to the
NerveCenter database if:

� It is located on a particular subnet and is not explicitly excluded

� It has particular capabilities, such isRouter, isHub, or isSNMPSupported

� It has a particular object identifier (OID)

Once you’ve done this setup, NerveCenter reads the appropriate node definitions into its own
database. The node information in NerveCenter’s database is updated whenever the node
information in the platform’s database changes.

Note Every node must have SNMP version information before NerveCenter can poll the node or
process a trap from the node. When NerveCenter receives nodes from OpenView,
NerveCenter deems the SNMP version for these nodes to be version 1. See Classifying the
SNMP Version Configured on Nodes on page 114 for more information.

You cannot perform the tasks mentioned in step 2 from the NerveCenter Client, however. These
tasks must be taken care of either when NerveCenter is installed or later from the NerveCenter
Administrator. For information about performing these tasks at installation, see the book Installing
NerveCenter, and for information about performing them later using the NerveCenter
Administrator, see Integrating NerveCenter with a Network Management Platform.
Chapter 5, Discovering and Defining Nodes 97

Discovering Nodes
Using NerveCenter’s IPSweep Behavior Model

For times when you want NerveCenter to discover the devices on a network, NerveCenter includes
the IPSweep behavior model. To use this behavior model, you—or for the first step, an
administrator—must perform the following tasks:

1. Someone must specify the following information:

� What subnets the IPSweep behavior model should explore and any nodes on those subnets
that the model should ignore

� Whether node information should be sent to NerveCenter or to a network management
platform

� Whether the IPSweep alarm should be started automatically when the NerveCenter Client
is started.

This information can be specified either when NerveCenter is installed or later via the
NerveCenter Administrator. For details on installing NerveCenter, see Installing NerveCenter,
and for information about using the NerveCenter Administrator, see Integrating NerveCenter
with a Network Management Platform.

2. You must make minor changes to the predefined NerveCenter alarm: IPSweep.

3. You must enable the IPSweep alarm.

Once the IPSweep behavior model becomes operational, it will find the devices on the subnets
you’ve specified and, for each node, send a trap to either the NerveCenter server or the network
management platform. If the trap is sent to NerveCenter, the server creates a node definition and
places it in the NerveCenter database. If the trap is sent to the platform, the platform writes
information about the node to its database, and then that information becomes available to
NerveCenter.

Both the customization and enabling of the IPSweep alarm is handled from the NerveCenter Client.
For instructions on how to modify and enable these alarms, refer to the following sections:

� Modifying the IPSweep Alarm on page 99

� Enabling the IPSweep Alarm on page 102
98 Designing and Managing Behavior Models

Discovering Nodes
Modifying the IPSweep Alarm

The IPSweep alarm actually executes the program, ipsweep, that discovers devices on your
network. If NerveCenter was installed in the default directory, this alarm will work correctly
without modification. However, if the product was installed in a non-default directory, you must
change the Command action associated with one of the alarm’s transitions so that the path to
ipsweep is correct. You may also want to change the delay between executions of the ipsweep
program. The instructions below explain how to change both the delay and the path to the ipsweep
program.

� To modify the IPSweep alarm:

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

2. Select the IPSweep alarm from the list.

The Open button is enabled.

3. Select the Open button.
Chapter 5, Discovering and Defining Nodes 99

Discovering Nodes
The definition of the IPSweep alarm is displayed in the Alarm Definition window.

4. If the alarm is enabled, set its Enabled status to Off.

The alarm may be turned on even if you’ve never explicitly enabled it. This is possible because
the person who configured NerveCenter may have requested that the server enable this alarm
on startup.

5. Double-click the transition from the PingSweep state to the Wait state.
100 Designing and Managing Behavior Models

Discovering Nodes
The Transition Definition dialog is displayed.

6. Double-click the Fire Trigger action.

The Fire Trigger Action dialog is displayed.

7. Change the delay for the Fire Trigger action from 5 minutes to the length of time you want to
wait between invocations of the ipsweep program.

A short delay will generate more network traffic, while a long delay will mean a longer wait
for new devices to be discovered.

8. Select the OK button in the Fire Trigger Action window.

9. Select the OK button in the Transition Definition window.

10. Double-click the IPSweep transition.

The Transition Definition window is displayed.

11. Double-click the Process Command action in the Transition Definition window.
Chapter 5, Discovering and Defining Nodes 101

Discovering Nodes
The Command Action dialog is displayed.

12. Edit the Command text field so that it contains the correct path to the ipsweep program.

13. Select the OK button in the Command Action window.

14. Select the OK button in the Transition Definition window.

15. Select the Save button in the Alarm Definition window.

Enabling the IPSweep Alarm

Once you’ve modified the IPSweep alarm, you must enable the alarm for the IPSweep behavior
model to become functional.

� To enable the IPSweep alarm:

1. For each alarm, perform this step and the following steps. From the client’s Admin menu,
select Alarm Definition List.

The Alarm Definition List window is displayed.

2. Highlight the name of the alarm you want to enable.

The Open button is enabled.
102 Designing and Managing Behavior Models

Discovering Nodes
3. Select the Open button.

The alarm’s definition is displayed in the Alarm Definition window.

4. Select the On radio button in the Enabled frame.

5. Select the Save button at the bottom of the window.

Tip You can also enable an alarm by selecting it in the Alarm Definition list, pressing the right
mouse button while your cursor is positioned over the highlighted alarm, and selecting On
from the pop-up menu.
Chapter 5, Discovering and Defining Nodes 103

Defining Nodes Manually
Defining Nodes Manually
There are two situations in which you should define nodes manually using the NerveCenter Client.

� You are managing a very small network, and it is easier to define the nodes in the network
manually than to configure NerveCenter’s IPSweep behavior model.

� You’ve discovered most of your nodes using either your network management platform’s or
NerveCenter’s discovery mechanism, but you need to add to your database a few nodes on a
subnet that wasn’t explored during the discovery process.

In either case, you can define your nodes using the Node Definition window in the client.

� To define a node manually:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. In the Node List window, select the New button.
104 Designing and Managing Behavior Models

Defining Nodes Manually
The Node Definition window appears.

3. In the Name text field, type the name of the workstation or network device that the node
object represents. The name can be a hostname or an IP address.

Note The maximum length for node names is 255 characters.

4. Select the node’s property group from the Group list box.

The Group list box contains a list of all the valid property group names defined in the
NerveCenter database.

5. In the Port text field, type the number of the port on the node to which NerveCenter should
send messages.

SNMP agents use port 161 to receive SNMP messages.

6. In the New IP text field, type the node’s IP address. Then select the Add button to add the
address to the IP Address List. If the node is multihomed, you can add the node’s other
addresses to the list in the same manner.

If you need to delete an address from the address list, highlight that address, and then select the
Delete button.

7. Check the Managed checkbox if you want NerveCenter to manage the node.
Chapter 5, Discovering and Defining Nodes 105

Defining Nodes Manually
You can leave Managed unchecked if you do not want the node to be affected by any
NerveCenter behavior models.

8. Check the Auto Delete checkbox if you want the node to be deleted if it is not in your network
management platform’s (NMP’s) node database.

The setting of this property is meaningful only if you are using an NMP as your node source. If
you’re using an NMP as a node source and you check the Auto Delete checkbox, the node
you’re defining will be deleted when the NerveCenter database is synchronized with the
NMP’s node database, if the node you’re defining is not found in the NMP’s node database. If
you don’t want the node to be deleted in this situation, don’t check the Auto Delete checkbox.

9. The Platform checkbox is a read-only control.

When you define a node manually, Platform is read-only and is unchecked and indicates that
the node you are defining was not discovered by a network management platform.

10. Check the Suppressed checkbox if you want the node to be in a suppressed state.

A suppressed node is not polled by any suppressible polls (a poll’s default state). Only polls
designed to monitor a device’s responsive/unresponsive state are not suppressible.

Tip Normally, you do not check Suppressed. A node’s suppressed attribute is usually set by an
alarm action when the alarm detects that the node is not reachable.

11. By default, NerveCenter deems the SNMP version for a node to be version 1. If you want to
manage the node using SNMP version 2c or 3, you must configure the appropriate SNMP
settings in the SNMP tab. In the SNMP tab, you can also change the Read and Write
community names for a node that’s using SNMP version 1 or 2c.

For details, see Configuring SNMP Settings for Nodes on page 107.

12. Select the Save button.
106 Designing and Managing Behavior Models

6
Configuring SNMP Settings for Nodes
A node must have SNMP version information before NerveCenter can poll the node or process a
trap from the node. If the node is using SNMP v3, the SNMP agent must be configured properly on
the node. See Using the SNMP Test Version Poll on page 58 for help testing communication with a
node.

You can manually specify the correct SNMP version for the node or command NerveCenter to
classify the node. If you specify the node as SNMP v3 or if the node is classified as SNMP v3, you
can set the security level and, if applicable, the authentication protocol used by NerveCenter to poll
the node. By default, NerveCenter sets the SNMP v3 security level to NoAuthNoPriv, which means
that NerveCenter uses neither message authentication nor encryption when communicating with
the agent.

For more information, see the following sections:

Section Description

Manually Changing the SNMP
Version Used to Manage a Node
on page 108

Describes how to change manually the SNMP version used by
NerveCenter to communicate with the agent on a node.

Changing the Security Level of an
SNMP v3 Node on page 110

Describes how to change manually the security level used by NerveCenter
to communicate with the SNMP v3 agent on a node.

Changing the Authentication
Protocol for an SNMP v3 Node
on page 112

Describes how to change manually the authentication protocol used by
NerveCenter to communicate with the SNMP v3 agent on a node.

Classifying the SNMP Version
Configured on Nodes on page 114

Describes the different possible ways in which NerveCenter classifies the
SNMP version on a node.
107

Manually Changing the SNMP Version Used to Manage a Node
Manually Changing the SNMP Version Used to Manage a Node
NerveCenter must use different SNMP protocols to communicate with the different versions of
SNMP agents. Most often, you will want NerveCenter to classify the SNMP version for nodes
when they are added to your database. You can, however, manually change the version that
NerveCenter uses for communicating with a particular node.

You might want to change the version manually, for example, if the node supports SNMP versions
v1, v2c, and v3, and the version currently assigned –say it’s SNMP v3—is not configured correctly
at the agent. Rather than continue sending SNMP v3 polls that may generate numerous alarms, you
can temporarily change the node’s SNMP version to v2c (which is supported on the node) until you
have a chance to reconfigure the v3 information at the agent. With this change, you can still poll the
node for certain MIB variables defined in your behavior models and continue monitoring minimal
MIB information for the node.

This feature also provides a way to override the maximum version classification value configured
in NerveCenter Administrator. For example, say the maximum classification value is v2c, you can
specify SNMP v3 for a particular node and run a test poll against that node.

� To change a node’s SNMP version manually:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. In the Node List window, select New if defining a new node, or select the node and then Open
to change an existing node.

The Node Definition window appears.
108 Designing and Managing Behavior Models

Manually Changing the SNMP Version Used to Manage a Node
3. Select the SNMP tab.

4. Select the node’s SNMP version from the SNMP Version list box.

Remember that if you select Unknown or a version that’s incorrect, NerveCenter can not poll
the node or process traps from the node.

5. Select the Save button.

Caution When you change the version, NerveCenter performs no type of error check to confirm
the version you choose. However, you can manually confirm SNMP v3 communication
with the node. Select the Test Version button to run a test poll and verify
communication using the specified version.

Tip You can also change the version of one or more nodes from the Node List window.
Right-click one or more nodes, select Version, and then select the version you want for the
nodes.
Chapter 6, Configuring SNMP Settings for Nodes 109

Changing the Security Level of an SNMP v3 Node
Changing the Security Level of an SNMP v3 Node
NerveCenter lets you set the security level you want for each managed node using SNMP v3. The
security level of a node determines whether authentication or encryption services are used with
communications between NerveCenter and the node.

SNMP v3 nodes can have one of the following security levels:

� NoAuthNoPriv—Neither message authentication nor encryption is used while
communicating with the agent. No passwords are required.

� AuthNoPriv—Message authentication is used without encryption while communicating with
the agent. An authentication protocol and password are required. The authentication password
is the same for all nodes managed by the NerveCenter user (by default NCUser). The password
can be changed in NerveCenter Administrator.

� AuthPriv—Both authentication and encryption are used when communicating with the agent.
Both the authentication and privacy protocols and passwords are required. These passwords
are the same for all nodes managed by the NerveCenter user (by default NCUser). Passwords
can be changed in NerveCenter Administrator.

For more information about SNMP v3 security, see NerveCenter Support for SNMP v3 Security on
page 49. For details about passwords, see NerveCenter Support for SNMP v3 Digest Keys and
Passwords on page 50.

� To change an SNMP v3 node’s security level:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. In the Node List window, select New if defining a new node, or select the node and then Open
to change an existing node.

The Node Definition window appears.
110 Designing and Managing Behavior Models

Changing the Security Level of an SNMP v3 Node
3. Select the SNMP tab.

4. Select the new security level from the Security Level list box.

5. Select the Save button.

Tip You can also change the security level for one or more nodes from the Node List window.
Right-click one or more nodes, select Security Level, and then select the level you want for
the nodes.
Chapter 6, Configuring SNMP Settings for Nodes 111

Changing the Authentication Protocol for an SNMP v3 Node
Changing the Authentication Protocol for an SNMP v3 Node
If you change the authentication protocol on an SNMP v3 agent, you must likewise change the
protocol used by NerveCenter to manage that agent.

An authentication protocol must be specified when the node’s security level is AuthNoPriv or
AuthPriv. NerveCenter supports either HMAC-MD5-96 (MD5) or HMAC-SHA-96 (SHA) as
authentication protocols. The default is MD5.

� To change the authentication protocol used by NerveCenter to manage an SNMP v3
node:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. In the Node List window, select New if defining a new node, or select the node and then Open
to change an existing node.

The Node Definition window appears.
112 Designing and Managing Behavior Models

Changing the Authentication Protocol for an SNMP v3 Node
3. Select the SNMP tab.

4. Select the new protocol from the Authentication Protocol list box.

5. Select the Save button.

A message box informs you that polling will be stopped for the node during this change and
prompts you to confirm the operation.

6. Select Yes to proceed with the protocol change or No to cancel the operation.

Tip You can also change the protocol for one or more nodes from the Node List window.
Right-click one or more nodes, select Authentication, and then select the protocol you want
for the nodes.

Polling will be halted for all selected nodes during this change.
Chapter 6, Configuring SNMP Settings for Nodes 113

Classifying the SNMP Version Configured on Nodes
Classifying the SNMP Version Configured on Nodes
A node must have SNMP version information before NerveCenter can poll the node or process a
trap from the node. NerveCenter enables you to obtain the SNMP version for a node and classify
the node with that version. This is required when you don’t know the SNMP version for a node or
when NerveCenter receives its nodes from Hewlett Packard OpenView Network Node Manager.
When NerveCenter receives nodes from OpenView, NerveCenter deems the SNMP version for
these nodes to be version 1.

A node must already exist in the database before it can be classified. To classify a node as SNMP
v3, the agent must have an initial user configured for discovery. For details, refer to Administrator
help or Managing NerveCenter.

For a detailed study of classification, refer to the white paper NerveCenter: Node Classification.

There are three ways in which NerveCenter classifies nodes:

� Enable auto-classification of nodes. If auto-classification is enabled, when NerveCenter adds
nodes to its database (discovered from a trap, added from OpenView, or imported from another
NerveCenter), any nodes without version information are classified at the highest possible
level up to the maximum version specified in NerveCenter Administrator. NerveCenter does
not attempt auto-classification for nodes that you add manually in Client.

For details, refer to Managing NerveCenter.

� Manually classify SNMP version for one or more nodes. NerveCenter attempts to classify one
or more nodes at the highest level up to the maximum version specified in NerveCenter
Administrator.

For details, see Classifying the SNMP Version for One or More Nodes Manually on page 115.

� Manually classify all nodes in the Client’s Node List. NerveCenter attempts to classify all
nodes in its database at the highest level up to the maximum version specified in NerveCenter
Administrator.

For details, see Classifying the SNMP Version for All Nodes Manually on page 116.

Note You can also manually confirm the SNMP version defined for a node. When you use this
option, NerveCenter attempts to poll a node using the version specified for the node. The
maximum classified version configured in NerveCenter Administrator has no effect on this
operation. For details, see Confirming the SNMP Version for a Node on page 116.

Classification of a node is temporarily disabled when you or someone else performs an SNMP v3
key change operation on the node. The authentication and privacy keys are changed from
NerveCenter Administrator.

If NerveCenter classifies a node as SNMP v3, NerveCenter assigns a default security level for
communicating with the node. The default security level is NoAuthNoPriv. For details about
changing the security level, see Changing the Security Level of an SNMP v3 Node on page 110.
114 Designing and Managing Behavior Models

Classifying the SNMP Version Configured on Nodes
Caution If NerveCenter classifies a node as “Unknown”, any existing version information for the
node is lost during classification. For example, if the node was previously identified as
SNMP v3 and is now changed (to v1, v2c, or Unknown), then the v3 related security
information for the node is lost.

If NerveCenter fails to classify the node, then the version of the node is set to
“Unknown.” NerveCenter does not poll nodes or process traps from nodes whose
SNMP version is Unknown.

For more information about classification, see also:

� When NerveCenter Classifies a Node’s SNMP Version on page 118

� How NerveCenter Classifies a Node’s SNMP Version on page 119

Classifying the SNMP Version for One or More Nodes Manually

Follow the procedure below to classify the SNMP version for one or more nodes manually. When
using this method, NerveCenter attempts to classify the selected nodes at the highest level up to the
maximum version specified in NerveCenter Administrator.

� To change the authentication protocol used by NerveCenter to manage an SNMP v3
node:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. In the Node List window, select New if defining a new node, or select the node and then Open
to change an existing node.

The Node Definition window appears.
Chapter 6, Configuring SNMP Settings for Nodes 115

Classifying the SNMP Version Configured on Nodes
3. Right-click the node or nodes you want to classify and select Classify.

NerveCenter attempts to classify the SNMP version on the nodes up to the highest level
specified in NerveCenter Administrator.

Classifying the SNMP Version for All Nodes Manually

NerveCenter Client allows you to classify the SNMP version for all nodes in its node list. With this
method, NerveCenter attempts to classify nodes at the highest level up to the maximum version
specified in NerveCenter Administrator.

� To classify nodes manually:

� From the client’s Admin menu, select Classify All Nodes.

NerveCenter attempts to classify the SNMP version on all nodes up to the highest level
specified in NerveCenter Administrator.

Confirming the SNMP Version for a Node

You can verify the SNMP version that NerveCenter has configured for any particular node. This is
useful when manually defining a node to be added to the node list.

With this option, NerveCenter attempts to poll the node using the version specified for the node.
The maximum classified version configured in NerveCenter Administrator has no effect on this
method of classification. For example, say the maximum classification value set in NerveCenter
Administrator is v2c and you have set the version for a particular node to SNMP v3. You can still
confirm SNMP v3 communication with the node using the method described below.
116 Designing and Managing Behavior Models

Classifying the SNMP Version Configured on Nodes
� To confirm a node’s SNMP:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. In the Node List window, select New if defining a new node, or select the node and then Open
to change an existing node.

The Node Definition window appears.

3. Select the SNMP tab.
Chapter 6, Configuring SNMP Settings for Nodes 117

Classifying the SNMP Version Configured on Nodes
4. Select the Test Version button.

NerveCenter attempts to communicate with the node using the SNMP version specified in the
SNMP Version field.

When NerveCenter Classifies a Node’s SNMP Version

There are two main ways that NerveCenter classifies nodes:

� On demand—You can issue a classify command in NerveCenter Client to classify one,
several, or all nodes in the database.

� Automatically—You can set up auto-classification in NerveCenter Administrator. Then, when
NerveCenter adds nodes to its database (discovered from a trap, added from a platform such as
OpenView Network Node Manager, or imported from another NerveCenter), any nodes
without version information are classified at the highest possible level. NerveCenter does not
attempt auto-classification for nodes that you add manually in Client. Refer to the book
Managing NerveCenter for details about auto-classification.

When you enable auto-classification, NerveCenter attempts auto-classification in the following
instances:

� A node is added through a node file either from importutil or from the Client, and the node
does not have a version or has the version “Unknown.” This would happen, for example, if you
were importing the node from a previous version of NerveCenter.

� A node is imported from another NerveCenter Server, and the node does not have a version or
has the version “Unknown.”

� A node is added from a trap, and the node’s version is not v3. NerveCenter needs to verify
whether these nodes are v1 or v2. If the trap indicates v3, NerveCenter does not need any
further verification.

� NerveCenter is co-resident with network management platform and the platform sends nodes
to NerveCenter. All nodes added from OpenView Network Node Manager are v1 by default.

Note NerveCenter does not attempt auto-classification for nodes that you add manually in Client.

Disabling auto-classification in Administrator prevents auto-classification for all these cases. If you
choose to disable auto-classification, bear in mind that NerveCenter does not poll nodes whose
SNMP version is unknown. (You can still classify nodes manually in NerveCenter Client using the
available commands.)
118 Designing and Managing Behavior Models

Classifying the SNMP Version Configured on Nodes
How NerveCenter Classifies a Node’s SNMP Version

There are two main ways that NerveCenter classifies nodes:

� Manually—You can issue a classify command in NerveCenter Client to classify one, several,
or all nodes in the database.

� Automatically—NerveCenter can be configured to classify nodes when they are added to its
database (discovered from a trap, added from a platform such as OpenView Network Node
Manager, or imported from another NerveCenter). Refer to the book Managing NerveCenter
for details about auto-classification.

For a detailed study of classification, refer to the white paper NerveCenter: Node Classification
which ships with the NerveCenter online guides. Following is a summary of classification.

Each time NerveCenter attempts to classify a node, NerveCenter sends a series of classification
requests (GetRequest messages) to the node. NerveCenter classifies the node based on the
responses to these requests. Each request corresponds to an SNMP version—either v1, v2c, or v3.

While classifying a node, NerveCenter attempts to detect the maximum supported version on the
agent up to a maximum specified version, which you can configure in NerveCenter Administrator.
So, for example, if you set a maximum classification version of v2c, NerveCenter never attempts to
classify nodes any higher than v2c. (However, you can manually specify any version for a node and
then test communication with the agent using that version. See Manually Changing the SNMP
Version Used to Manage a Node on page 108 for details.)

Based on the response to its messages, NerveCenter changes its SNMP version setting for the node.

Caution Note the following about node classification:
� When NerveCenter attempts to classify a node, any existing version information for

the node is lost during classification. For example, if the node was previously
identified as SNMP v3 and is now changed (to v1, v2c, or Unknown), then the v3
related security information for the node is lost.

� If NerveCenter fails to classify the node, then the version of the node is set to
“Unknown.” NerveCenter cannot poll a node with an unknown version.

� A node must have correct version information, either supplied manually by the user
or obtained via classification, before NerveCenter can poll the node or process a trap
from the node.
Chapter 6, Configuring SNMP Settings for Nodes 119

Classifying the SNMP Version Configured on Nodes
120 Designing and Managing Behavior Models

7
Defining Property Groups and Properties
Recall that a property is a string, a property group is a container for properties, and property groups
are assigned to nodes. In general, before NerveCenter will use a behavior model to manage a node,
the following requirements must be met:

� The property of any poll in the behavior model must be in the node’s property group.

� The name of the base object used in the poll condition of any poll in the behavior model must
be in the node’s property group.

� The property of any alarm in the behavior model must be in the node’s property group.

This chapter concentrates on the mechanics of listing all existing property groups and properties,
creating properties, creating property groups, and assigning property groups to nodes. The chapter
concludes with a section that offers suggestions on how to use property groups effectively. For
information on these subjects, see the following sections.

Section Description

Listing Property Groups and
Properties on page 122

Explains how to view the property groups and properties that are
currently defined in the NerveCenter database.

Creating a Property on page 124 Explains how to create a new property.

Creating a New Property Group on
page 125

Discusses the different methods of creating a new property group.

Assigning a Property Group to a Node
on page 130

Discusses the different methods of assigning a new property group to
a node.

Tips for Using Property Groups and
Properties on page 141

Recommends ways to use property groups to organize nodes.
121

Listing Property Groups and Properties
Listing Property Groups and Properties
When NerveCenter is first installed and the NerveCenter database is created, many property groups
are loaded into the database. Before you begin creating new property groups, you should review
these existing property groups and see if one of them meets your needs. Or perhaps you can create
the property group you need by modifying an existing property group.

The following sections explain how to display a list of property groups and how to display a list of
the properties in a property group:

� Listing Property Groups on page 122

� Listing Properties on page 123

Listing Property Groups

� To display a list of the property groups currently defined in the database for the
active server:

� From the client’s Admin menu, choose Property Group List.

This action causes NerveCenter to display the Property Group List window.

The existing property groups are listed in alphabetical order in the Property Group list on the
left side of the window.
122 Designing and Managing Behavior Models

Listing Property Groups and Properties
Listing Properties

You generally only display properties in the context of a property group. That is, you don’t view all
the properties defined in the database in a single list; you view a list of properties that belong to the
same property group.

� To list the properties in a property group:

1. From the client’s Admin menu, choose Property Group List.

NerveCenter displays the Property Group List window.

2. Select a property group from the Property Group list.

All of the properties belonging to that property group are listed in alphabetical order in the
Property list on the right side of the window.
Chapter 7, Defining Property Groups and Properties 123

Creating a Property
Creating a Property
If you design a new behavior model and intend for it to manage a group of nodes that don’t
currently share a unique property, you must create a property to serve as that unique property.
Because you must create this property in the context of an existing property group, you will
probably need to create a property group before you create your property. For instructions on
creating a property group, see the section Creating a New Property Group on page 125. Once
you’ve created both the property group and the property, you can assign the new property group to
the nodes you want to manage with the new behavior model.

� To create a property:

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.

2. Select a property group from the Property Group list.

Often you select a property group that you’ve created expressly to contain your new property.
When you create the property, it will belong to this property group.

3. Type the name of the new property in the New Property text field.

Note The maximum length for property names is 255 characters.

4. Select the Add button below the Property list.

The property is added to the Property list.

5. Select the Save button at the bottom of the window.
124 Designing and Managing Behavior Models

Creating a New Property Group
Creating a New Property Group
As you develop your network management strategy, you may need to create new property groups.
For example, NerveCenter ships with a property group called Router that you can use to uniquely
identify the routers on your network. However, suppose you decide that while some of your
behavior models should apply to all routers, others should apply to either campus routers or
backbone routers, but not both. To handle this problem, you might create two new property groups,
CampusRouter and BackboneRouter. Each can be a copy of Router to which you add one unique
property. For instance, you might add the property campusRouter to the property group
CampusRouter and the property backboneRouter to the property group BackboneRouter. You could
then assign these new property groups to the appropriate nodes.

There are three methods of creating a property group:

� You can base the new property group on an existing one. In this case, you copy an existing
property group and then add one or more new properties to it. This is the technique used in the
hypothetical example above.

� You can create a property group that contains the names of the base objects in one or more
MIB definitions. This technique is useful when you add new hardware to your network and
there is a special MIB defined for that hardware. Basing the property group on this MIB
ensures that you’ll meet one of the prerequisites for making the new device pollable: the base
object used in the poll condition will be in the property group.

� You can create an empty property group and add properties to it one by one. Obviously, this
option gives you the greatest flexibility, but it also is the most time consuming.

For further information on the three methods of creating a property group, see the sections listed
below:

� Based on an Existing Property Group on page 126

� Based on the Contents of MIBs on page 127

� Adding Properties Manually on page 129
Chapter 7, Defining Property Groups and Properties 125

Creating a New Property Group
Based on an Existing Property Group

Earlier, we mentioned that you could create a property group for campus routers by copying the
predefined property group Router, naming the copy CampusRouter, and adding to the new property
group the unique property campusRouter.

� To create a new behavior model based on an existing one:

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.

2. From the Property Group list, select the property group that you want to copy.

The properties contained in this property group are displayed in the Property list.

3. Type a name for the new property group in the New Property Group text field.

Note The maximum length for property group names is 255 characters.

4. Select the Copy button, located below the New Property Group text field.

Your new property group appears in the Property Group list and is highlighted.

5. Use the procedure explained in the section Creating a Property on page 124 to add one or
more new properties to your property group.

6. Select the Save button.
126 Designing and Managing Behavior Models

Creating a New Property Group
Based on the Contents of MIBs

If you purchase a new device that comes with a new vendor MIB, your NerveCenter administrator
should incorporate the new MIB into NerveCenter’s compiled MIB so that you can take advantage
of the new information provided by the vendor. In addition, you should create a new property group
that contains properties for all the base objects in the new MIB. Why? Recall that a node’s property
group must contain properties for each of the MIB base objects you monitor on the node. If you
want to poll the new device for the values of the attributes belonging to the new MIB objects, you
need properties for the new base objects in the device’s property group.

� To create a new property group based on the contents of one or more MIBs:

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.

2. Select the MIB to Group button at the bottom of the window.
Chapter 7, Defining Property Groups and Properties 127

Creating a New Property Group
NerveCenter displays the MIB to Property Group window.

All of the MIBs in NerveCenter’s compiled MIB are displayed in the MIB list. If you select
one of the MIBs in the list, the names of the base objects for that MIB are displayed in the Base
Objects list.

3. Select from the MIB list a MIB whose base objects you want to become properties in your new
property group.

4. Enter a name for your property group in the Property Group Name text field. Or leave there
the default name that NerveCenter has supplied.

5. Select the OK button.

The MIB to Property Group window is dismissed, and the name of your new property group
appears in the Property Group list in the Property Group List window. If you wanted to base
your property group on just one MIB, you’re finished. If you want the new property group to
contain the names of the base objects from more than one MIB, continue with step 6.

6. In the Property Group List window, select the MIB to Group button again.

The MIB to Property Group window is displayed.

7. In the MIB to Property Group window, select from the MIB list another MIB whose base
objects you want included in your property group.

8. Enter in the Property Group Name field the same name you used in step 4.

9. Select the OK button.
128 Designing and Managing Behavior Models

Creating a New Property Group
The Merge or Overwrite Property Group window is displayed.

10. Select the Merge button.

11. Repeat step 6 through step 10 if necessary.

12. Select the Save button.

Adding Properties Manually

If you need a property group that contains only a few properties—maybe a couple of base object
names and one user-defined property—you can create an empty property group and then add
properties to it by hand.

� To create an empty property group and then add properties to it:

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.

2. Type the name of your new property group in the New Property Group text field.

3. Select the Add button under the New Property Group text field.
Chapter 7, Defining Property Groups and Properties 129

Assigning a Property Group to a Node
Your new property group appears in the Property Group list and is highlighted. Note that no
properties are listed in the Property list since the property group is empty.

4. To add one or more properties to the new property group, perform the steps covered in the
section Creating a Property on page 124.

5. Select the Save button.

Assigning a Property Group to a Node
When a node is created, it is assigned a property group, and this property group determines which
behavior models NerveCenter uses to manage the node. Of course, this property group assignment
isn’t permanent. You can change the assignment manually, or a behavior model being used to
manage the node can change it.

This section discusses a number of ways in which you can assign a property group to a node and
explains when you would use each method. For further information, see the following subsections.

� Using the Node Definition Window on page 130

� Using the Node List Window on page 132

� Using the AssignPropertyGroup() Function on page 133

� Using the Set Attribute Alarm Action on page 138

� Using OID to Property Group Mappings on page 140

Using the Node Definition Window

One way to change the property group of a node is to open the Node Definition window for that
node and to change the value of the Group field. This method is an appropriate way to change a
node’s property group if:

� You know in advance which node or nodes need the new property group

� Only one node or a few nodes need the change
130 Designing and Managing Behavior Models

Assigning a Property Group to a Node
� To change a node’s property group using the Node Definition window:

1. From the client’s Admin menu, choose Node List.

NerveCenter displays the Node List window.

2. Highlight the name of the node whose property group you want to change.

3. Select the Open button.

The Node Definition window appears. This window enables you to edit the properties of the
node you selected.
Chapter 7, Defining Property Groups and Properties 131

Using the Node List Window
4. Select a new property group from the Group drop-down list.

5. Select the Save button.

Repeat this procedure for any additional nodes you want to assign a new property group to.

Using the Node List Window
You can change the property group of a set of nodes from the Node List window, using a popup
menu accessible from that window. It is appropriate to use this method of property group
assignment if:

� You need to change the property group for more than a couple of nodes

� You want to assign the same property group to each of the nodes

� You know in advance which nodes you want to modify

� To change the property group for a set of nodes from the Node List window:

1. From the client’s Admin menu, choose Node List.

NerveCenter displays the Node List window.

2. Select one node whose property group you want to change. Then hold down the Ctrl key and
select the remainder of the nodes you want to modify.

3. With your cursor positioned over one of the highlighted entries, press the right mouse button to
bring up the node-management popup menu, and select Property Group from the menu.
132 Designing and Managing Behavior Models

Using the Node List Window
NerveCenter displays the Property Group Edit dialog box.

4. Select a property group from the drop-down list.

5. Select the Save button.

Using the AssignPropertyGroup() Function

In addition to being able to assign property groups to nodes manually using the NerveCenter user
interface, you can use the AssignPropertyGroup() function in a behavior model to change a node’s
property group dynamically. This function can appear in a poll condition, a trap mask trigger
function, or a Perl subroutine.

The syntax for this function is shown below:

AssignPropertyGroup("PropertyGroupName")

The property group whose name is passed to the function must already exist.

For further information about how to use this function in a poll condition, a trigger function, or a
Perl subroutine—and for information on when it’s appropriate to use the function in each of these
contexts—see the sections listed below:

� In a Poll Condition on page 133

� In a Trigger Function on page 135

� In a Perl Subroutine on page 136

In a Poll Condition

Suppose you want to change the property group assignment for all of your Cisco routers in
Building 6. You can collect the names or IP addresses of all these nodes and change their property
groups manually using the NerveCenter user interface. However, this can be an error prone process.
All you have is your list of routers to make sure that you assign the new property group to exactly
the right set of nodes. Alternatively, you can create a poll that will detect whether a polled node is a
Cisco router located in Building 6 and will assign the new property group only to nodes that meet
these criteria.

Note The instructions below are not intended to explain in detail how to create this type of poll.
Creating polls is a fairly large topic and is covered in Using Polls on page 143 These
instructions cover only the general procedure for incorporating a call to
AssignPropertyGroup() into a poll condition.
Chapter 7, Defining Property Groups and Properties 133

Using the Node List Window
� To define a poll condition that changes the property group

This procedure details how to define a poll condition that changes the property group of each Cisco
router in Building 6, you would:

1. Display the Poll Condition page in the Poll Definition window.

2. Create the condition that determines whether you want to call AssignPropertyGroup():

if ((system.sysLocation eq "Building 6") &&
(system.sysObjectID == 1.3.6.1.4.1.9.1))

3. Add a block including a call to AssignPropertyGroup() to the preceding condition:

if ((system.sysLocation eq "Building 6") &&
(system.sysObjectID == 1.3.6.1.4.1.9.1)) {

AssignPropertyGroup("Cisco6");
}

This example assumes that the new property group is named Cisco6.

Note Your poll condition must also include a call to FireTrigger(); otherwise, you won’t be able to
save the poll.

4. Select the Save button to save your poll.
134 Designing and Managing Behavior Models

Using the Node List Window
Remember that before NerveCenter will use this poll, there must be an enabled alarm in which the
poll can cause a state transition.

Caution When a poll changes a node’s property group, any alarm instances that have been
created for that node are deleted.

In a Trigger Function

Here’s a simple example of when you might use the AssignPropertyGroup() function in a trap mask
trigger function. Suppose that you want to use NerveCenter’s Authentication behavior model to
monitor your network for excessive SNMP authentication failures. This model includes a trap mask
and two polls and looks for three authentication failures on a single node within a ten minute
period.

You could enable the behavior model by assigning to the nodes you want to monitor a property
group that contains the property snmp and turning on the Authentication alarm. But let’s say that
you don’t want to monitor nodes that have never experienced an authentication failure, because the
model does involve some polling. To monitor only nodes whose agents have sent authentication
failure traps, you can initially assign your nodes a property group that doesn’t contain the property
snmp. You can then define a trap mask that looks for authentication failure traps and changes the
property group of the nodes from which it receives these traps. Let’s assume that the new property
group is called Mib-II and contains the property snmp.

Note The instructions below are not intended to explain in detail how to create this type of trap
mask. Creating masks is a fairly large topic and is covered in “<Z_Hyperlink>Using Trap
Masks.” These instructions cover only the general procedure for incorporating a call to
AssignPropertyGroup() into a trigger function.

� To define a trap mask

This procedure defines a trap mask that changes the property group of each node that issues an
authentication failure trap, you would:

1. Create a trap mask that looks for a generic trap 4.

2. Indicate that the trap mask will use a trigger function instead of a simple trigger.
Chapter 7, Defining Property Groups and Properties 135

Using the Node List Window
3. Display the Trigger Function page in the Mask Definition window.

4. Type in your call to AssignPropertyGroup():

AssignPropertyGroup("Mib-II");

You can make this property-group assignment conditional, based on the value of a variable
binding if you need to. In the present case, such a condition isn’t necessary.

5. Also type in a call to FireTrigger();

FireTrigger("TrigggerName");

Remember that before NerveCenter will use this mask, there must be an enabled alarm in
which the mask can cause a state transition.

6. Save your trap mask.

Caution When a mask changes a node’s property group, any alarm instances that have been
created for that node are deleted.

In a Perl Subroutine

Another place from which you can call the AssignPropertyGroup() function is a Perl Subroutine
alarm-transition action. This is the appropriate context for using this function if you want to
perform your property-group assignment conditionally, based on information that is available from
with a Perl subroutine, but not elsewhere. For example, a Perl subroutine associated with an alarm
transition has access to the name of the property group of the node that triggered the transition. You
could use this information to change a node’s property group only if:
136 Designing and Managing Behavior Models

Using the Node List Window
� An alarm transition containing the appropriate Perl Subroutine action is caused by a trigger
associated with the node

� The node currently has a particular property group

For a complete list of the information that is available to a Perl subroutine, see the section
NerveCenter Variables on page 292.

Note The instructions below do not explain in detail how to create a Perl subroutine or how to
create an entire alarm. They explain only how to add to an alarm transition a Perl Subroutine
action that will change the property group of a node. For complete information about
creating Perl subroutines, see the section Perl Subroutine on page 286, and for complete
information about creating alarms, see Using Alarms on page 223

� To add a Perl Subroutine to an alarm transition:

The procedure below explains how to add to an alarm transition a Perl Subroutine action that
assigns the property group Gateway to the node associated with the trigger that caused the
transition. The property group is assigned only if the node’s current property group is Mib-II.

1. Use the Perl Subroutine Definition window to create your Perl subroutine.

The subroutine should look something like this:

if ($NodePropertyGrp eq "Mib-II") {
AssignPropertyGroup("Gateway");

}

2. In the Alarm Definition window, open the Transition Definition dialog by double-clicking on
the transition to which you want to add the Perl Subroutine action.

3. Select the New Action button.

NerveCenter displays the new-action popup menu.
Chapter 7, Defining Property Groups and Properties 137

Using the Node List Window
4. Select the Perl Subroutine action.

NerveCenter displays the Perl Subroutine Action dialog box.

5. Select the name of the subroutine you created in step 1 from the Name list box.

6. Select the OK button in the Perl Subroutine Action dialog.

The dialog is dismissed, and the newly defined action appears in the Actions list in the
Transition Definition dialog.

7. Select the OK button in the Transition Definition dialog.

8. Select the Save button in the Alarm Definition window.

Caution When a Perl subroutine changes a node’s property group, any alarm instances that have
been created for that node are deleted.

Using the Set Attribute Alarm Action

There are two ways to change a node’s property group using alarm-transition actions: using the Perl
Subroutine action and using the Set Attribute action. For information on changing a node’s property
group using the Perl Subroutine action, see the section In a Perl Subroutine on page 136. Using a
Perl Subroutine action to change a property group is appropriate when you want to use Perl to do
something more complex than simply change the property group of the node associated with the
trigger that causes the alarm transition (or the property group of any other node, for that matter). If
the only action you would take from a Perl subroutine is to change a property group, you should use
the Set Attribute action instead. This approach will save you the trouble of having to write and
compile a Perl subroutine.

Note The instructions below do not explain how to create an entire alarm. They explain only how
to add to an alarm transition a Set Attribute action that will change the property group of a
node. For complete information about creating alarms, see Chapter 11, Using Alarms.
138 Designing and Managing Behavior Models

Using the Node List Window
� To add to an alarm transition a Set Attribute action that changes a node’s property
group:

1. Open the Transition Definition dialog by double-clicking on the transition to which you want
to add the Set Attribute action.

2. Select the New Action button.

NerveCenter displays the new-action popup menu.

3. Select the Set Attribute action.

NerveCenter displays the Set Attribute Action dialog.

4. Leave the Object Type value set to Node since you want to set an attribute of a node.

5. Usually you’ll leave the Name value set to $NODE.

$NODE stands for the name of the node associated with the trigger that caused the alarm
transition. However, you can change the value to the name of any node in the NerveCenter
database if you know in advance the name of the node whose property group you want to
change.
Chapter 7, Defining Property Groups and Properties 139

Using the Node List Window
6. Select Property Group from the Attribute drop-down list.

7. Select a property-group name using the Value drop-down list.

The property group you choose will become the new property group for the node you chose in
step 5 whenever this alarm transition takes place.

8. Select the OK button in the Set Attribute Action dialog.

The dialog is dismissed, and the newly defined action appears in the Actions list in the
Transition Definition dialog.

9. Select the OK button in the Transition Definition dialog.

10. Select the Save button in the Alarm Definition window.

Caution When a Set Attribute alarm action changes a node’s property group, any alarm instances
that have been created for that node are deleted.

Using OID to Property Group Mappings

When a node is first written to the NerveCenter database, it is assigned a property group based on
the object ID of the node. For example, a Cisco router with an OID of 1.3.6.1.4.1.9.1 is, by default,
assigned a property group of CISCO-ROUTER-9.x-MIB. The assignments are based on a table of
mappings between OIDs and property groups. If no mapping exists for a particular device, that
device is assigned the default property group NCDefaultGroup.

Using the NerveCenter client, you can add entries to, or change entries in, this
OID-to-property-group table. The new mappings will affect any nodes that are added to the
NerveCenter database after you make your changes.
140 Designing and Managing Behavior Models

Tips for Using Property Groups and Properties
� To add a new OID-to-property-group mapping:

1. From the client’s Admin menu, choose OID to Group.

The OID to Property Group dialog is displayed.

2. Enter an object identifier in the System Object text field.

3. Enter the name of a property group in the Property Group text field.

4. Select the Add button.

5. Select the Save button.

Tips for Using Property Groups and Properties
Using property groups and properties is mainly a matter of common sense; however, the sections
below give you a few suggestions for using them effectively.

Categorizing Nodes

We’ve said that property groups enable you to create groups of nodes, each of which is managed by
a set of behavior models. As you create your groups, it’s helpful to list a variety of criteria for
categorizing your nodes and then to use the criteria that make the most sense for your network. For
example, some criteria you could use in classifying your nodes are:

� Type of device (workstation, server, router)

� Location

� Importance (Which nodes need to be managed most closely?)
Chapter 7, Defining Property Groups and Properties 141

Tips for Using Property Groups and Properties
� Supported MIBs

� Business function

Apply whatever set of criteria is appropriate for your site.

Move from the General to the Specific

Set up property groups that establish general groups of devices first. Then create subcategories of
nodes as necessary.

For instance, suppose that you have MIB-II agents running on all of your computers, including
servers. You want to monitor the servers more closely than the personal computers, so you copy the
existing Mib-II property group, name the copy Server, and add to the copy the property server. You
can now set up polls and alarms that take one action, such as sending an e-mail message, when any
workstation is unreachable, and another action, such as paging an administrator, when a server is
unreachable.

Or maybe you want to refine how you monitor servers so that you can distinguish file servers from
print servers. You can set up two new property groups, each a copy of Server. Name one Fserver
and add the property fserver, and name the other Pserver and add the property pserver. Note that
both groups still contain the property server because each is a copy of the Server property group.
You can then set up polls and alarms to perform one action when any server is unreachable,
perform a different action when a file server is unreachable, and perform a third action when a print
server is unreachable.

MIB Objects

The property group for a device should contain a property for every MIB base object that might be
used in a poll condition by a poll designed to contact that node. For further information on building
poll conditions, see Writing a Poll Condition on page 150.

If a base object is not in the node’s property group, polls whose poll conditions refer to that object
will not contact the node.
142 Designing and Managing Behavior Models

8
Using Polls
NerveCenter polls enable you to retrieve information from SNMP agents on devices in order to
determine the status of those devices. Figure 8-1 depicts the role that a poll plays in a behavior
model

Figure 8-1. The Role of a Poll in a Behavior Model

To function as part of a behavior model, a poll must be tied to one or more alarms by means of one
or more triggers. If the poll does not define a trigger that can affect a pending alarm transition, the
poll is never sent to a device. This behavior is part of NerveCenter’s smart polling feature.

Other aspects of this smart polling feature are that NerveCenter doesn’t send a poll to a node unless
the poll’s property is in the node’s property group and that NerveCenter never sends a suppressible
poll to a suppressed node. Together, these behaviors sharply curtail the amount of network traffic
NerveCenter generates by polling SNMP agents.

Nodes
Response

Poll

Behavior model

Trigger

Alarm

Poll
143

The remainder of this chapter explains in detail how to create and work with polls. Refer to the
following sections:

Section Description

Listing Polls on page 145 Explains how to display a list of the polls currently defined in the
NerveCenter database.

Defining a Poll on page 147 Explains how to create a new poll.

Writing a Poll Condition on
page 150

Explains how to write the poll condition for a new poll.

Documenting a Poll on page 164 Explains how to add notes (documentation) to a poll.

Enabling a Poll on page 168 Explains how to turn a poll on.
144 Designing and Managing Behavior Models

Listing Polls
Listing Polls
This section explains how to display a list of the polls currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular poll.

For information on creating a new poll, see Defining a Poll on page 147.

� To display a list of polls and then display a particular poll’s definition:

1. From the client’s Admin menu, choose Poll List.

The Poll List window is displayed.

This window lists all NerveCenter polls and provides a brief definition of each. For each poll,
the window specifies a name and the following information:

� Whether the poll is currently enabled

� Whether the poll is suppressible

� The poll’s property

� The name of the base object used to build the poll condition

2. Select a poll from the poll list.

3. Select the Open button
Chapter 8, Using Polls 145

Listing Polls
NerveCenter displays the Poll Definition window.

The poll defined in this figure is named AuthFail. Every thirty minutes, the poll is sent to
nodes whose property group includes the property snmp, and the poll checks for an increase in
the value of snmpInBadCommunityNames or snmpInBadCommunityUses. If the poll finds an
increase in either of these values, it fires the trigger authFail; otherwise, it does not fire a
trigger. The poll is suppressible and is currently not enabled. It must be enabled before
NerveCenter will use its definition to poll any devices.
146 Designing and Managing Behavior Models

Defining a Poll
Defining a Poll
This section explains the steps required to create a new poll.

� To define a new poll:

1. From the client’s Admin menu, choose Poll List.

NerveCenter displays the Poll List window.

2. Select the New button.
Chapter 8, Using Polls 147

Defining a Poll
The Poll Definition window is displayed.

3. Make sure that the Off radio button is selected in the Enabled frame.

The poll must remain off until you’ve completed defining the poll and saved your definition.
You must then turn the poll on for it to become part of a functioning behavior model.

4. In the Name text field, type a unique name for the poll.

Note The maximum length for poll names is 255 characters.

5. From the Property list box, select a property, or leave the Property set to NO_PROP.

The property you choose limits which nodes NerveCenter can retrieve data from using this poll
definition. The poll will contact only those nodes whose property group contains this property.
(Note that the property can be a member of multiple property groups.)

If you don’t want to restrict the poll to any subset of nodes, leave the field set at NO_PROP.
The poll will target all managed nodes.

6. Usually, you’ll leave the Port text field blank. However, if you want this poll to communicate
with nodes on a port other than that specified in the nodes’ definitions, enter that port number
here.
148 Designing and Managing Behavior Models

Defining a Poll
7. Define the poll rate by entering a number in the Poll Rate text field and selecting either the
Hours, Minutes, or Seconds radio button.

Note When defining the poll rate, the interval should be equal to or greater than (numberOf
Retries + 1) * retryInterval. Otherwise, NerveCenter can issue a second poll before the first
one times out. The number of retries and the retry interval are defined on the SNMP tab in
the NerveCenter Administrator.

Caution Choosing a frequent poll rate can have a serious impact on network traffic, especially if
the poll applies to numerous nodes.

8. Uncheck the Suppressible checkbox if you want to send this poll to a node even when the node
is suppressed.

A suppressible poll does not poll a node whose state is suppressed. This feature prevents
repeated polling of devices that are not capable of responding. The default value for a poll is
suppressible.

There might be specific polls that you want to send to a node even when it is suppressed. For
example, if you want to check on the status of a suppressed node to determine whether it has
returned to normal, use an insuppressible poll.

9. Select the Poll Condition tab to display the Poll Condition page, and enter your poll condition.
For details on how to construct this poll condition, see Writing a Poll Condition on page 150.

10. Select the Save button to save your poll.

11. If you want to enable you poll now, set the poll’s Enabled status to On, and then select the
Save button again.
Chapter 8, Using Polls 149

Writing a Poll Condition
Writing a Poll Condition
Every poll must include a poll condition. This poll condition, which you write using Perl, specifies
which MIB variables the poll should read, what conditions the values of those variables must meet,
and what triggers will be fired each time a value makes a condition true. For example, the following
poll condition detects whether a node’s desired and current operational status are both up and, if
they are, fires the trigger ifUp:

if (ifEntry.ifAdminStatus == up and ifEntry.ifOperStatus == up) {
FireTrigger("ifUp");

}

Note that both the MIB variables referred to in this condition are children of the same base object
(ifEntry). In a single poll condition, you can only refer to one base object. If the condition that you
want to detect requires that you inquire about variables associated with multiple base objects, you
must design multiple polls.

Another important point about poll conditions is that if a poll causes a trigger to be fired, that
trigger’s variable bindings will include a name-value pair for each MIB variable referred to in the
poll condition and read by the poll. If such a trigger causes a logging action, the value of each
variable used in the poll condition is written to the log.

Most poll conditions are very similar in structure. They follow this pattern:

if (condition1) {
FireTrigger(arguments);

}
elsif (condition2) {

FireTrigger(arguments);
}
else {

FireTrigger(arguments);
}

The conditions can be arbitrarily complex, and the FireTrigger() function fires a trigger, whose
name, subobject, and node you can control.

Note The maximum length for trigger names is 255 characters.

Because a poll condition is written in Perl, you can use any data types, operators, and functions that
Perl understands in this condition. Also, you can make use of a number of functions and one
variable defined by NerveCenter. The functions and variables available to you are summarized in a
pop-up menu for Perl accessible via a right mouse click from the poll condition editing area. (See
the following section, Using the Pop-Up Menu for Perl on page 160, for more information.)
150 Designing and Managing Behavior Models

Writing a Poll Condition
Caution NerveCenter’s Perl interpreter is single threaded. This means that only one poll, trap
mask function, Perl subroutine, or action router rule can run at one time. Perl scripts that
take a long time to run, such as logging to a file, performing database queries, or issuing
external system calls, can slow down NerveCenter’s performance. If you have need of
such Perl scripts in your environment, use the scripts sparingly.

For all the details about writing a poll condition, see the following sections:

� The Basic Procedure for Creating a Poll Condition on page 152

� Functions for Use in Poll Conditions on page 153

� NerveCenter Variables on page 292

� Using the Pop-Up Menu for Perl on page 160

� Examples of Poll Conditions on page 162
Chapter 8, Using Polls 151

Writing a Poll Condition
The Basic Procedure for Creating a Poll Condition

The section explains how to use the Poll Condition page in the Poll Definition window to create a
poll condition.

� To create a poll condition:

1. In the Poll Definition window, select the Poll Condition tab.

The Poll Condition page is displayed.

2. From the Base Object drop-down list, select the base object whose attributes you will use in
the poll condition.

A list of the base object’s attributes is displayed in the Attributes list.

3. Place your cursor in the Poll Condition text area, and enter the poll condition.

You can enter the poll condition by simply typing the condition in this text area. However, you
can also use several shortcuts to enter text:

� One useful shortcut allows you to enter a MIB base object plus an attribute (connected by
a period) at the point of the cursor. To use this shortcut, position your cursor where you
want to enter the text, and double-click an attribute in the Attribute list. (You must have
selected a base object from the Base Object drop-down list while the poll condition editing
area was empty.)
152 Designing and Managing Behavior Models

Writing a Poll Condition
� You can enter a Perl operator, a call to a NerveCenter function, or a NerveCenter variable
using the poll-condition pop-up menu for Perl. To bring up this menu, click the right
mouse button while your cursor is in the poll-condition editing area.

See the section Using the Pop-Up Menu for Perl on page 160 for further information
about this pop-up menu.

� You can paste text from the clipboard into the text area.

When you return to the Poll page—to save your poll—the poll condition you’ve constructed
appears in the read-only Poll Condition text area.

Functions for Use in Poll Conditions

NerveCenter includes a number of functions that you can use in constructing a poll condition.
Several of these functions are designed specifically for use in poll conditions. For example, they
enable you to determine the exact number of seconds between polls and to determine the change in
the value of a MIB variable between one poll and the next. You can also use the functions
DefineTrigger(), FireTrigger(), AssignPropertyGroup(), and in() and a set of string-matching
functions. These functions can be used not only in defining poll conditions, but in defining other
objects as well.

The functions and variables available to you for use in poll conditions are summarized in a pop-up
menu for Perl accessible via a right mouse click from the poll condition editing area in the Poll
Condition page of the Poll Definition window. (See the section, Using the Pop-Up Menu for Perl
on page 160, for more information.)

For detailed information about all of these functions, see the following sections:

� NerveCenter Functions for Poll Conditions on page 154

� DefineTrigger() Function on page 155

� FireTrigger() Function on page 156

� AssignPropertyGroup() Function on page 158

� in() Function on page 159

� String-Matching Functions on page 159
Chapter 8, Using Polls 153

Writing a Poll Condition
NerveCenter Functions for Poll Conditions

The functions discussed below are designed specifically for use in poll conditions.

delta()

Syntax: delta(baseObject.attribute)

Arguments:

baseObject.attribute - The name of a MIB variable qualified by the name of its parent
object, for example, ifEntry.ifType.

Description: Returns the difference between the value of baseObject.attribute retrieved by the
previous poll and that retrieved by the current poll.

Example: This statement fires a trigger if the number of SNMP messages sent to a node
without an acceptable community name has increased:

if (delta(snmp.snmpInBadCommunityNames) >= 1) {
FireTrigger("authFail");

}

elapsed

Syntax: elapsed

Description: Returns the number of seconds that elapsed between the previous poll and the
current poll.

Example: This statement fires a trigger if the poll detects interface traffic levels exceeding 80
percent of capacity:

if (((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets))
* 8) / (ifEntry.ifSpeed * elapsed) >= 0.801) {

FireTrigger("highLoad");
}

not_present

Syntax: not_present

Description: Returns true if the poll is not able to read the value of the MIB attribute that
precedes the function.

Example: This statement fires a trigger if the poll is unable to read the value of
system.sysDescr from an agent’s MIB:

if (system.sysDescr not_present) {
FireTrigger("noAgent");

}

154 Designing and Managing Behavior Models

Writing a Poll Condition
present

Syntax: present

Description: Returns true if the poll is able to read the value of the MIB attribute that precedes
the function.

Example: This statement fires a trigger if the poll is able to read the value of ifInUcastPkts
from an agent’s MIB.

if (ifEntry.ifInUcastPkts present) {
FireTrigger("gotInUcastPkts");

}

DefineTrigger() Function

The DefineTrigger() function enables you to create triggers which you can assign to variables and
fire using FireTrigger() in NerveCenter Perl expressions. (In the scope of a subroutine, Perl requires
you to define a variable before you can use it.)

You can use DefineTrigger() in NerveCenter anywhere that you write Perl expressions (except for
Action Router rule conditions):

� Poll conditions

� Perl Subroutine alarm actions

� Mask trigger functions

� OpC mask trigger functions

As with triggers created with FireTrigger(), the triggers you create with DefineTrigger() are
available in the trigger lists NerveCenter displays when you are defining alarm transitions, Perl
subroutines, and Action Router rule conditions.

The syntax for the DefineTrigger() function is shown below:

DefineTrigger()

Syntax: DefineTrigger(“name”)

Arguments:

name - “The” name of the trigger in quotation marks.

Note Trigger names can contain the following types of characters: alphanumeric, underscore, and
hyphen. No other characters are allowed. The maximum length for trigger names is 255
characters.

Description: DefineTrigger() creates a trigger which you can assign to a variable and fire
using FireTrigger().
Chapter 8, Using Polls 155

Writing a Poll Condition
Example one: The expression creates a trigger named “hello” which is assigned to a Perl
variable “$trig” and is then fired:

$Trig = DefineTrigger("hello")
FireTrigger($trig)

Example two: The following code excerpt is from a Perl subroutine (TestParentSetNode)
associated with the downstream alarm suppression behavior models shipped with
NerveCenter. $TriggerFlag stores the name of the trigger to be fired which depends on the
status of the parent node:

DefineTrigger(’UnReachable’);
DefineTrigger(’Down’);
DefineTrigger(’Testing’);
...
if(($ParentStatus eq "Down" || $ParentStatus eq "UnReachable") &&
$TriggerFlag eq "NotSet")
{

$TriggerFlag = "UnReachable";
}
elsif($ParentStatus eq "Up")
{

$TriggerFlag = "Down";
}
elsif($ParentStatus eq "Testing" && $TriggerFlag ne "Down")
{

$TriggerFlag = "Testing";
}
...
FireTrigger($TriggerFlag);

FireTrigger() Function

The FireTrigger() function enables you to fire a trigger from anywhere in NerveCenter that you
write Perl expressions:

� Poll conditions

� Perl Subroutine alarm actions

� Mask trigger functions

� OpC mask trigger functions

� Action Router rule conditions

You specify the name of the trigger and optionally its subobject attribute and node attribute.
156 Designing and Managing Behavior Models

Writing a Poll Condition
Caution In a poll condition FireTrigger function, the subobject and node values are supplied by
the poll and can’t be overridden. For this reason, you should not attempt to provide the
subobject or node parameter when calling the FireTrigger function from a poll
condition.

As with triggers created with DefineTrigger(), the triggers you create with FireTrigger() are
available in the trigger lists NerveCenter displays when you are defining alarm transitions, Perl
subroutines, and Action Router rule conditions.

The syntax for the FireTrigger() function is shown below:

FireTrigger()

Syntax: FireTrigger("name", [subobject, [node]])

Arguments:

name - The name of the trigger in quotation marks. Name can also be a Perl variable that is
assigned a trigger using the DefineTrigger() function. For example:

$var=DefineTrigger(“myTrigger”);
FireTrigger($var);

Note Trigger names can contain the following types of characters: alphanumeric, underscore, and
hyphen. No other characters are allowed. The maximum length for trigger names is 255
characters.

subobject - You can pass a subobject to FireTrigger() in one of two ways.

You can use a string literal, for example, “ifEntry.2”.

Second, if you called FireTrigger() from a trigger function or a Perl subroutine, you can
use the function VbObject(n). This function returns the subobject associated with the nth
variable binding in a trap or trigger.

Note When firing a trigger from a mask trigger function, you can pass a subobject using the
variable $DefaultSubobject. $DefaultSubobject contains the subobject associated with the
first variable binding in the trap. $DefaultSubobject works correctly only from a trap mask
trigger function.

node - You can pass a node to FireTrigger in one of three ways.

First, you can use the variable $NodeName, which is the default for this argument. How
this variable obtains its value depends on the context in which it is used, as shown in
Table 8-1.
Chapter 8, Using Polls 157

Writing a Poll Condition
Second, include the name of the node in quotation marks, for example, “MyBestRouter”
or “192.168.197.110”. This string must match the name of the node as it’s listed in the
NerveCenter Node List window.

Finally, if the node name you want to pass to FireTrigger() is in a trap’s or a trigger’s
variable bindings, you can use the function VbValue(n) to retrieve that name. This
function returns the value of the nth variable binding.

Description: FireTrigger() creates a trigger with the name, subobject, and node values that you
supply.

Example: The following call generates a trigger with the name “trigger” and the default
subobject and node:

FireTrigger(“trigger”);

AssignPropertyGroup() Function

You use the AssignPropertyGroup() function to assign a property group to a node. The function can
be called from a poll condition, a trap mask trigger function, or a Perl Subroutine alarm action. The
node affected is the node being polled, the node from which a trap arrived, or the node associated
with the trigger that caused an alarm transition (in the case of a Perl Subroutine action).

The syntax of the AssignPropertyGroup() function is shown below:

AssignPropertyGroup()

Syntax: AssignPropertyGroup(“propertyGroup”)

Arguments:

propertyGroup - The name of an existing property group.

Description: The function assigns a property group to a node.

Example: The example below shows the AssignPropertyGroup() function being used in a Perl
Subroutine alarm action. If the variable $DestStateSev (which holds the name of the
NerveCenter severity of the destination state) contains the string “Critical,” the property group
of the node associated with the trigger that caused the alarm transition is changed to
CriticalGrp. The node will now be managed by a new set of behavior models.

Table 8-1. The Value of $NodeName

If $NodeName is used in a ... Its value is ...

Poll condition The name of the node that was polled.

Trap mask trigger function The name of the node associated with the agent address in
an SNMP trap.

Perl subroutine The trigger’s node attribute.
158 Designing and Managing Behavior Models

Writing a Poll Condition
if ($DestStateSev eq "Critical") {
AssignPropertyGroup("CriticalGrp")

}

in() Function

The in() function is available for use in poll conditions, trap mask trigger functions, Perl
subroutines, and Action Router rule conditions.

in()

Syntax: in(scalar, scalar, ...)

Arguments:

scalar - An scalar value in a set of scalar values (often integers representing interface
types).

Description: Returns true if the value of the attribute that precedes the function is found in the
set of scalars in parentheses.

Example: This statement fires a trigger if a particular interface is part of a broadcast network:

if (ifEntry.ifType in (6,7,8,9,11,12,13,15,26,27)) {
FireTrigger(“broadcast”);

}

String-Matching Functions

NerveCenter provides four string-matching functions (Perl subroutines), which can be used in poll
conditions, trap mask trigger functions, OpC trigger functions, Perl subroutines, and Action Router
rules. These functions enable you to determine whether a string contains a substring or a word.

Each of the string-matching functions is explained below:

CaseContainsString()

Syntax: CaseContainsString(string, substring)

Description: Returns true if string contains substring. The match is case sensitive.

CaseContainsWord()

Syntax: CaseContainsWord(string, word)

Description: Returns true if string contains word, and word begins and ends on a word
boundary. The match is case sensitive.

ContainsString()

Syntax: ContainsString(string, substring)

Description: Returns true if string contains substring. The match is case insensitive.
Chapter 8, Using Polls 159

Writing a Poll Condition
ContainsWord()

Syntax: ContainsWord(string, word)

Description: Returns true if string contains word, and word begins and ends on a word
boundary. The match is case insensitive.

Using the Pop-Up Menu for Perl

There are five different tasks in NerveCenter that require you to write Perl code:

� Creating a poll condition

� Creating a trap mask trigger function

� Creating an OpC mask trigger function

� Creating a Perl subroutine that will be executed by the Perl Subroutine alarm action

� Creating an Action Router rule condition

For each of these tasks, you can use not only Perl 5, but some NerveCenter functions and variables
that are appropriate to the task. For instance, if you’re writing a trap mask trigger function, you can
use NerveCenter functions to retrieve information about the variable bindings in the trap that
caused the trigger function to be called. You can also use NerveCenter variables that contain
information about the contents of the trap.

What functions and variables are available to you depends on the task you’re performing.
Therefore, NerveCenter provides a pop-up menu in the editing area for each task that indicates
which functions and variables are applicable in that situation. Figure 8-2 shows the pop-up menu as
it appears in the editing area used to create a trap mask trigger function.
160 Designing and Managing Behavior Models

Writing a Poll Condition
Figure 8-2. Pop-Up Menu for Perl

The submenu being displayed lists all the variable-binding functions.

Note In addition to listing NerveCenter functions and variables, the pop-up menus also list Perl’s
arithmetic, logical, and relational operators.

Besides serving as documentation, these pop-up menus enable you to enter text in an editing area at
the point of the cursor. For example, if you were working in the trigger-function window shown
above, selecting the menu entry VbValue would cause the characters “VbValue(“ to be written to
the editing area.

To make this discussion more concrete, let’s look at an example. Let’s say that you want to write
the following trigger function:

if ($NodeName ne "troublemaker") {
FireTrigger("gotIt");

}

� To write this trigger function, you would:

1. Open the Mask Definition window, and go tho the Trigger Function page.

2. Left-click in the Trigger Function editing area, and type if (.

3. Press the right mouse button, select the Trap variables submenu, and select $NodeName
from that submenu.
Chapter 8, Using Polls 161

Writing a Poll Condition
4. Press the right mouse, select the Relational operators submenu, and select ne from that
submenu.

5. Type "troublemaker") {; then, enter a new line and four spaces.

6. Press the right mouse button, select the Other functions submenu, and select FireTrigger
from that submenu.

7. Type in the remainder of the trigger function.

Examples of Poll Conditions

This section presents a number of sample poll conditions and explains how the poll conditions
work.

Example 1
if (system.sysLocation eq "Building 6" and
system.sysObjectID == 1.3.6.1.4.1.9.1) {

AssignPropertyGroup("Cisco6");
}

This poll condition checks to see whether a device is located in Building 6 and whether it is a Cisco
product. If the device meets these conditions, it is assigned the property group Cisco6.

Example 2
if (ifEntry.ifType present and
ifEntry.ifSpeed present and
ifEntry.ifInOctets present and
ifEntry.ifInUcastPkts present and
ifEntry.ifInNUcastPkts present and
ifEntry.ifInDiscards present and
ifEntry.ifInErrors present and
ifEntry.ifOutOctets present and
ifEntry.ifOutUcastPkts present and
ifEntry.ifOutNUcastPkts present and
ifEntry.ifOutDiscards present and
ifEntry.ifOutErrors present) {

FireTrigger("ifData");
}

This poll condition is true as long as the poll is able to read the values of these interface variables
from an agent’s MIB.

This type of poll condition is useful if you want to gather MIB data that you’ll use later in
generating a report. For example, if a poll fires an ifData trigger after this poll condition is
evaluated, that trigger will contain a list of variable bindings that contains the name and value of
162 Designing and Managing Behavior Models

Writing a Poll Condition
each of these attributes. If that trigger causes an alarm transition that has associated with it a Log to
File action, these names and values will be written to a log file. That log file can then be used as
input to a reporting tool.

Example 3
if ((delta(ifEntry.ifInErrors) + delta(ifEntry.ifInDiscards) +
delta(ifEntry.ifOutErrors) + delta(ifEntry.ifOutDiscards) - 0.05 *
(delta(ifEntry.ifInErrors) + delta(ifEntry.ifInDiscards) +
delta(ifEntry.ifOutErrors) + delta(ifEntry.ifOutDiscards) +
delta(ifEntry.ifInUcastPkts)+ delta(ifEntry.ifInNUcastPkts) +
delta(ifEntry.ifOutUcastPkts) + delta(ifEntry.ifOutNUcastPkts))
> 0) == 1) {

FireTrigger("highErrorRate");
}

This poll condition is true if the percentage of discarded packets on an interface is greater than five
percent during a given polling interval. This is a good example of how to use the delta function.

Example 4
if (ifEntry.ifType in (37)) {

FireTrigger("typeATM");
}

This poll condition evaluates to true if an interface’s ifType attribute equals 37. In other words, the
condition is true if the interface is an ATM interface. Obviously, this type of poll condition is useful
for classifying interfaces.

Example 5
if (((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets) -
0.00125 * elapsed * ifEntry.ifSpeed > 0) &&
(ifEntry.ifType in (6,7,8,9,11,12,13,15,26,27))) == 1 or
((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets) -
0.09375 * elapsed * ifEntry.ifSpeed > 0) &&
!(ifEntry.ifType in (6,7,8,9,11,12,13,15,24,26,27))) == 1) {

FireTrigger("highLoad");
}

This poll condition uses the delta, elapsed, and in functions. It determines whether, during the last
poll interval, the traffic on an interface on a broadcast network was greater than 1 percent or
whether the traffic on an interface on a point-to-point network was greater than 75 percent.
Chapter 8, Using Polls 163

Documenting a Poll
Documenting a Poll
This section explains how to add documentation (notes) to a poll and what should be covered in
that documentation.

How to Create Notes for a Poll

You can add notes to a poll by following the procedure outlined in this subsection.

� To add notes to a poll:

1. From the client’s Admin menu, choose Poll List.

The Poll List window is displayed.

2. Select the poll you want to add a note to from the list.

3. Make sure that your poll is not enabled.

4. Select the Open button.
164 Designing and Managing Behavior Models

Documenting a Poll
The Poll Definition window is displayed.

5. In the Poll Definition window select the Notes button.
Chapter 8, Using Polls 165

Documenting a Poll
The Poll Notes and Associations dialog is displayed.

6. Enter your documentation for the poll by typing in this dialog. See the section What to Include
in Notes for a Poll on page 166 for information on what type of information you should enter
here.

7. Select the OK button at the bottom of the Poll Notes and Associations dialog.

The Poll Notes and Associations dialog is dismissed.

8. Select the Save button in the Poll Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who opens
the definition for your alarm and selects the Notes button.

What to Include in Notes for a Poll

We recommend that you include the following information in the notes for your poll:

� Purpose of the poll

� Associated alarms

� Description of the poll condition

� The poll’s property
166 Designing and Managing Behavior Models

Documenting a Poll
For example, let’s consider the poll definition shown in Figure 8-3.

Figure 8-3. CsCpuBusy Poll

The notes for this poll should look something like this:

Purpose: Detects a busy CPU on a Cisco device
Related alarms: CsCpuUtilization. This alarm tracks CPU utilization on
a Cisco device and characterizes it as normal, high, or very high.
This poll’s trigger, CsCpuBusy, causes a transition from Ground to
High.
Poll Condition: If the value of lsystem.avgBusy5 is between 76 and 90,
the poll fires its true trigger. The variable avgBusy5 contains an
average percentage of CPU utilization. This average is a five-minute
exponentially decayed moving average.
Property: lsystem
Chapter 8, Using Polls 167

Enabling a Poll
Enabling a Poll
For a poll to become functional, several conditions must be met:

� The poll must be enabled.

� The poll’s property must be in the property group associated with one or more nodes, and if
those nodes are suppressed, the poll must not be suppressible.

� There must be an enabled alarm with a pending state transition that can be affected by the poll.

This section explains how to enable a poll.

� To enable a poll:

1. From the client’s Admin menu, choose Poll List.

The Poll List window is displayed.

2. Select the poll you want to enable from the list.

The Open button becomes enabled.

3. Select the Open button.
168 Designing and Managing Behavior Models

Enabling a Poll
The Poll Definition window is displayed and shows the definition of the poll you selected.

4. Select the On radio button in the Enabled frame.

5. Select the Save button.

The poll is now enabled.

Tip You can also enable a poll by selecting the poll in the Poll List window, pressing the right
mouse button while your cursor is over the entry for the poll, and choosing On from the
popup menu.
Chapter 8, Using Polls 169

Enabling a Poll
170 Designing and Managing Behavior Models

9
Using Trap Masks
Trap masks give you the ability to screen SNMP traps sent by managed nodes and received by
NerveCenter for traps of interest. This chapter explains in detail how to define and use trap masks.
Refer to the following sections:

Section Description

About Trap Masks on page 172 Overviews the role trap masks play in behavior models.

How NerveCenter Decodes
SNMP v2c/v3 Traps on page 173

Describes the mechanics of how NerveCenter decodes v2c/v3 SNMP
traps.

Listing Trap Masks on page 174 Explains how to display a list of the trap masks currently defined in the
NerveCenter database.

Defining a Trap Mask on
page 176

Explains how to create a new trap mask.

Writing a Trigger Function on
page 180

Explains how write a trap-mask trigger function, a Perl script that fires
triggers conditionally, based on the contents of a trap’s variable bindings
or some other information in the trap.

Documenting a Trap Mask on
page 186

Explains how to write notes (documentation) for a trap mask.

Enabling a Trap Mask on
page 190

Explains how to turn a trap mask on and off.
171

About Trap Masks
About Trap Masks
Figure 9-1 depicts the role that a trap mask plays in a behavior model.

Figure 9-1. Role of a Trap Mask in a Behavior Model

Note that a trap mask is like a poll in that it is tied to one or more alarms by the triggers it can fire.
If there are no pending alarm transitions that the mask can affect, the mask is disabled in the sense
that it will not be applied to any incoming SNMP traps.

Assuming that the mask can affect an alarm transition, the mask is applied to SNMP traps as they
arrive and determines whether it should fire a trigger in response to the trap. A mask can fire a
trigger in one of two ways:

� A trap mask can fire a simple trigger. A mask designed to fire this type of trigger looks only at
the Enterprise, Generic trap, and Specific trap fields in a trap’s Protocol Data Unit (PDU). If
these fields meet predefined conditions, the mask fires a trigger. All the triggers that this mask
ever fires will have the same name.

� A mask can also fire a trigger from a trigger function by calling the FireTrigger() function.
This type of mask looks at the fields mentioned above to determine whether it should call its
trigger function. If called, this trigger function generally looks at the trap’s variable bindings
and may fire one of several triggers depending on the contents of the variable bindings.

If a mask fires a trigger, that trigger interacts with the alarm system just as a trigger fired by a poll
does. If the necessary attributes of the trigger match the corresponding attributes of a pending alarm
transition, a state transition occurs.

Nodes

SNMP trap

Mask

Behavior model

Trigger

Alarm
172 Designing and Managing Behavior Models

How NerveCenter Decodes SNMP v2c/v3 Traps
How NerveCenter Decodes SNMP v2c/v3 Traps
Because SNMP v2c/v3 traps use a different architecture that extends security and administration,
the mechanics of how NerveCenter receives an SNMP v2c/v3 trap is different than how it receives
an SNMP v1 trap.

When an SNMPv3 trap is received by the NerveCenter Server, it attempts to decode the trap. If the
SNMP engine sending the trap is not registered with NerveCenter, then NerveCenter installs the
engine.

If the user name that is listed in the trap’s header does not match NCUser, NerveCenter outputs a
‘Configuration Mismatch’ error in the V3 Operation Error Status field of the Node Definition
window (SNMP page) and stops attempting to decode the trap.

Next, if the user name matches and the security level is other than NoAuthNoPriv, NerveCenter
tries to decode the trap with an MD5 authority protocol and a DES privacy protocol. Should
decoding fail, NerveCenter uses the SHA authority protocol. When this fails, NerveCenter outputs
a ‘Configuration Mismatch’ error and stops attempting to decode the trap.

Finally, if the authorization/privacy portion of the trap decode is successful, then NerveCenter
checks for the v3 trap’s context. If the context fails, NerveCenter outputs a ‘Configuration
Mismatch’ error and stops attempting to decode the trap.

Figure 9-2. V3 Operation Error Status Field of the SNMP Tab

Chapter 9, Using Trap Masks 173

Listing Trap Masks
Listing Trap Masks
This section explains how to display a list of the trap masks currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular trap mask.

For information on creating a new trap mask, see Defining a Trap Mask on page 176.

� To display a list of trap masks and then display a particular mask’s definition:

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.

This window lists all NerveCenter masks and provides a brief definition of each. For each
mask, the window specifies a name and the following information:

� Whether the mask is currently enabled

� The generic trap the mask is looking for

� The enterprise from which the trap must come before the mask will fire a trigger

� The name of the mask’s simple trigger or an indication that the mask uses a trigger
function

2. Select a mask from the mask list.

3. Select the Open button
174 Designing and Managing Behavior Models

Listing Trap Masks
NerveCenter displays the Mask Definition window.

The mask defined in this figure is named LinkDown. It is looking for a generic trap 2 from any
managed node and will fire the simple trigger linkDown if it finds one.
Chapter 9, Using Trap Masks 175

Defining a Trap Mask
Defining a Trap Mask
This section outlines the procedure for creating a trap mask.

� To define a new trap mask:

1. From the client’s Admin menu, choose Mask List.

NerveCenter displays the Mask List window.

2. Select the New button.

The Mask Definition window appears.
176 Designing and Managing Behavior Models

Defining a Trap Mask
3. In the Name text field, type a unique name for the trap mask.

Note The maximum length for trap mask names is 255 characters.

Tip A trap mask name should describe the type of trap the mask is looking for, for example,
“ColdStart.”

4. From the Generic list box, select a generic trap type.

Before a trap mask can fire a trigger, the value of this field must match the value of a trap’s
Generic trap field, which may contain any of the enumeration constants shown in Table 9-1:

Table 9-1. Generic Trap Values

Constant Meaning

coldStart (0) Signifies that the sending protocol entity is re-initializing itself such that
the agent’s configuration or the protocol entity implementation must be
altered.

warmStart (1) Signifies that the sending protocol entity is re-initializing itself such that
neither the agent configuration nor the protocol entity implementation is
altered.

linkDown (2) Signifies that the sending protocol entity recognizes a failure in one of the
communication links represented in the agent’s configuration.

The trap PDU of type linkDown contains as the first element of its
variable bindings the name and value of the ifIndex instance for the
affected interface.

linkUp (3) Signifies that the sending protocol entity recognizes that one of the
communication links represented in the agent’s configuration has come
up.

The trap PDU of type linkUp contains as the first element of its variable
bindings the name and value of the ifIndex instance for the affected
interface.

authenticationFailure (4) Signifies that the sending protocol entity is the addressee of a protocol
message that is not properly authenticated.

egpNeighborLoss (5) Signifies that an EGP neighbor for whom the sending protocol entity was
an EGP peer has been marked down and that the peer relationship no
longer exists.

The trap PDU of type egpNeighborLoss contains as the first element of its
variable bindings the name and value of the egpNeighAddr instance for
the affected neighbor.

enterpriseSpecific (6) Signifies that the sending protocol entity recognizes that some
enterprise-specific event has occurred. The Specific trap field identifies
the particular trap that occurred.
Chapter 9, Using Trap Masks 177

Defining a Trap Mask
Note The definitions in Table 9-1 are taken from RFC1157.

If you select EntSpecific = 6 (an enterprise specific trap), the Specific text field is enabled, and
you must enter a vendor-specific trap number in that field.

If you select AllTraps = -1, the mask will disregard the contents of each trap’s Generic trap
field when looking for traps of interest. That is, any generic trap type in the trap meets the trap
mask’s requirement.

5. If you want the trap mask to examine the contents of a trap’s Enterprise field, follow these
directions:

a. Select the Filter on Enterprise scope checkbox.

Controls in the Enterprise group box become enabled.

b. Select one of the following radio buttons:

� From—specify that the trap’s Enterprise field must contain an OID that either matches the
OID in your mask’s Enterprise field, or is subordinate to it.

� From Only—indicate that the trap’s enterprise must match the mask’s enterprise exactly.

c. In the Enterprise text field, enter an OID, or a name that maps to an OID.

6. If the trap NerveCenter will process is an SNMP version 2c or 3 trap, select the v2C/v3 radio
button.

7. For SNMP v1 traps, if your mask’s generic trap type is 6 (enterprise specific), enter a
vendor-specific trap number in the Specific text field.

Before the mask can fire a trigger, the number you enter in the Specific field must match the
value of a trap’s Specific trap field.

Tip To determine what enterprise specific traps an SNMP agent can produce, consult the
vendor’s ASN.1 files or other documentation.

8. For SNMP v2c or v3 traps, enter the trap OID.

You can select one of the OID values, choose All Traps, or type the value for a particular
enterprise trap OID. SNMP v3 trap OID values map to generic traps as shown in Table 9-2.
178 Designing and Managing Behavior Models

Defining a Trap Mask
9. Select one of the Trigger Type radio buttons:

� Simple Trigger—if the values in your mask’s Generic, Enterprise, and Specific fields are
sufficient to define the trap you are looking for.

� Trigger Function—if you need to specify additional information: for example, the values
of variable bindings.

If you select the Simple Trigger radio button, the Simple Trigger combo box is enabled.

10. In step 9, if you selected:

� Simple Trigger—enter a trigger name in the Simple Trigger field. You can either type in
the name of a new trigger or choose a trigger from the list of existing triggers.

� Trigger Function—select the Trigger function tab, and enter a trigger function on the
Trigger Function page.

This trigger function is a Perl subroutine that you can use to check the values of variable
bindings or examine other pertinent information and to fire appropriate triggers. For complete
information on writing trigger functions, see the section Writing a Trigger Function on
page 180.

11. Select the Save button at the bottom of the Mask Definition window to save your mask.

Tip Remember that you must enable the trap mask (by setting Enabled to On) before using it in a
behavior model. While the mask is disabled, it is not used in the examination of any
incoming traps. This means that any behavior models that use this trap mask as the sole
source of triggers are also disabled.

Table 9-2. SNMP v3 trap OID/Generic Value Mappings

Trap Generic Value SnmpTrapOID.0

coldStart 0 1.3.6.1.6.3.1.1.5.1

warmStart 1 1.3.6.1.6.3.1.1.5.2

LinkDown 2 1.3.6.1.6.3.1.1.5.3

linkUp 3 1.3.6.1.6.3.1.1.5.4

AuthFail 4 1.3.6.1.6.3.1.1.5.5

EgpNeighLoss 5 1.3.6.1.6.3.1.1.5.6
Chapter 9, Using Trap Masks 179

Writing a Trigger Function
Writing a Trigger Function
If a mask cannot completely describe the type of trap it is looking for by specifying the contents of
the trap’s Generic trap, Enterprise, and Specific trap fields, it must contain a trigger function. This
function, which you write using Perl, can include additional conditions that the trap must meet, and
it can fire different triggers as appropriate.

Most trigger functions are very similar in structure. They follow this pattern:

if (condition1) {
FireTrigger(arguments);

}
elsif (condition2) {

FireTrigger(arguments);
}
else {

FireTrigger(arguments);
}

The conditions, which can be arbitrarily complex, generally test the contents of a trap’s variable
bindings. However, they can test other information as well; for example, a condition can determine
whether a trap came from a particular node. The FireTrigger() function fires a trigger, whose name,
subobject, and node you can control.

Note The maximum length for trigger names is 255 characters.

To assist you in writing trigger functions, NerveCenter provides:

� A set of functions that enable you to examine the contents of a trap’s variable bindings and to
fire triggers, among other things

� A set of predefined variables that give you access to information about the trap you’re
examining, such as the community string in the trap’s SNMP message

� A pop-up help menu in the trigger function editing area that lists all the NerveCenter functions
and variables available for use in a trigger function.

For further information about these predefined functions and variables and the pop-up help menu,
see the following sections:

� Functions for Use in Trigger Functions on page 181

� Variables for Use in Trigger Functions on page 183

� Using the Pop-Up Menu for Perl on page 160

Also, see the section Examples of Trigger Functions on page 184. This section presents several
sample trigger functions that show a number of the functions and variables being used in context.
180 Designing and Managing Behavior Models

Writing a Trigger Function
Caution NerveCenter’s Perl interpreter is single threaded. This means that only one poll, trap
mask function, Perl subroutine, or action router rule can run at one time. Perl scripts that
take a long time to run, such as logging to a file, performing database queries, or issuing
external system calls, can slow down NerveCenter’s performance. If you have need of
such Perl scripts in your environment, use the scripts sparingly.

Functions for Use in Trigger Functions

NerveCenter provides a number of functions (actually Perl subroutines) that facilitate the writing of
trigger functions. The list below indicates what types of functions are available and where you can
find detailed information about each function:

� Variable-binding functions. These functions enable you to determine the number of variable
bindings in a trap’s variable-binding list and to obtain information about each variable binding.
For instance, you can retrieve the subobject and attribute associated with a variable-binding
object and the value of a variable-binding object.

For reference information about these functions, see the section Variable-Binding Functions on
page 182.

� String-matching functions. These functions enable you to determine whether a string
contains another string or a particular word. The functions are useful in conditions that test the
value of a variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions on
page 159.

� DefineTrigger(). This function enables you to create triggers which you can assign to
variables and fire using FireTrigger() in NerveCenter Perl expressions.

For reference information about this function, see the section DefineTrigger() Function on
page 155.

� FireTrigger(). This function enables you to fire a trigger from your trigger function. You can
specify the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on
page 156.

� AssignPropertyGroup(). This function enables you to assign the node that sent a trap to a
property group.

For reference information about this function, see the section AssignPropertyGroup() Function
on page 158.

� in(). This function enables you to determine whether one scalar value is in a set of scalar
values.

For reference information about this function, see the section in() Function on page 159.
Chapter 9, Using Trap Masks 181

Writing a Trigger Function
Variable-Binding Functions

Before looking at the variable-binding functions, let’s make sure that we’re using the same
terminology.

When a trap arrives, NerveCenter looks at the trap’s variable bindings and, for each variable
binding, it sees an object and a value.

Figure 9-3. Variable Binding

In this case, the object is the OID encoding of the object type (sysDescr) plus an instance, and the
value is a string that describes the system.

When NerveCenter sees this variable binding, it stores the following information. The portion of
the OID that corresponds to the system group is stored as the binding’s base object, and the
instance (0) is stored as the binding’s instance. When concatenated, the base object and the instance
form what NerveCenter calls a subobject.

Figure 9-4. Base Objects, Instances, and Subobjects

The variable sysDescr is stored as the binding’s attribute.

Figure 9-5. Attributes

Finally, the value “Windows Workstation” is stored as the binding’s value.

The variable-binding functions give you access to a binding’s subobject, attribute, and value.
There’s also a function that returns the number of variable bindings in a trap or trigger.

1.3.6.1.2.1.1.1.0

Object Value

“Windows Workstation”

Object Value

1.3.6.1.2.1.1.1.0 “Windows Workstation”

Base object + Instance = Subobject (system.0)

Object Value

1.3.6.1.2.1.1.1.0 “Windows Workstation”

Attribute (sysDescr)
182 Designing and Managing Behavior Models

Writing a Trigger Function
Each of the variable-binding functions is explained below:

VbAttribute()

Syntax: VbAttribute(index)

Description: Returns the attribute from the variable binding with an index of index. The first
variable binding has an index of 0.

VbNum()

Syntax: VbNum()

Description: Returns the number of variable bindings in the trap’s variable-binding list.

VbObject()

Syntax: VbObject(index)

Description: Returns the subobject from the variable binding with an index of index. The first
variable binding has an index of 0.

VbValue()

Syntax: VbValue(index)

Description: Returns the value from the variable binding with an index of index. The first
variable binding has an index of 0.

Variables for Use in Trigger Functions

NerveCenter defines several variables for use in trap mask trigger functions. For the most part,
these variables contains the values of the fields in a trap’s Protocol Data Unit (PDU), with the
exception of the variable bindings.

The complete list of variables that you can use in a trap mask trigger function is shown in
tTable 9-3:

Table 9-3. Variables Used in Trigger Functions

Variable Description

$NodeName The name of the node that was the source of the trap

$TrapPduAgentAddress The IP address of the SNMP agent that sent the trap

$TrapPduCommunity The community name included in the SNMP message

$TrapPduEnterprise An OID representing the object that generated the trap

$TrapPduGenericNumber The generic trap type

$TrapPduSpecificNumber A specific trap code

$TrapPduTime The time, in hundredths of a second, between the last initialization of the
network entity and the generation of the trap
Chapter 9, Using Trap Masks 183

Writing a Trigger Function
Examples of Trigger Functions

This section presents several trigger functions and explains what the functions do.

Example 1
if ($NodeName ne "troublemaker") {

FireTrigger("gotIt");
}

If the node that sent the trap is any node except troublemaker, issue a trigger named gotIt. This
example would be useful if you had a device sending inappropriate traps. The trigger function
would allow you to pay attention to a trap only when it came from other, more dependable, devices.

Example 2
if (system.sysContact eq "Tom Jones") {

FireTrigger("jonesJob");
} else {

FireTrigger("otherAdmin");
}

If the first variable binding containing the sysContact attribute has the value “Tom Jones,” a
jonesJob trigger is issued. Otherwise, an otherAdmin trigger is issued.

Example 3
if (snmp.snmpInBadCommunityNames > 25) {

FireTrigger("tooManyIntrusions", VbObject(2));
}

If the snmpInBadCommunityNames attribute is found in one of the variable bindings, its value is
checked. If there were at least 26 attempts to communicate with the trap’s node without the proper
community string before the trap was issued, a tooManyIntrusions trigger is issued. The subobject
assigned to the trigger is the subobject associated with the third variable binding.

This would be an effective way to ignore authorization traps until they became significant.

Example 4
if (ContainsString(VbValue(2)), "crucial message") {

FireTrigger("trig");
}

If the third variable binding, assumed here to be defined as a DisplayString, contains the string
“crucial message,” the trigger trig is generated. This type of trigger function is useful when text
messages are sent to NerveCenter via traps.
184 Designing and Managing Behavior Models

Writing a Trigger Function
Example 5
if ((VbNum() == 5) && (.8 * VbValue(3) < VbValue(4))) {

FireTrigger("diskSpaceLow", VbObject(1));
} elsif ((VbNum() == 4) && (VbValue(3) > 400000000)) {

FireTrigger("diskSpaceLow", VbObject(1));
}

This example assumes that there is an enterprise-specific trap that contains information about disk
space use. An older version of the vendor’s agent sent a trap with four variable bindings, the last
variable binding containing the amount of disk space used (VbValue(3) > 400000000)). A newer
version of the agent sends traps with five variable bindings: the last binding contains disk space
used, and the next to last contains the disk space capacity. If a trap arrives from a newer agent, you
want to fire a trigger only if available disk space is less than 20 percent. This trigger function not
only enables you to ignore noncritical situations, but handles all releases of your vendor’s device.

Example 6
if (VbValue(0) == 1) {

FireTrigger("thisProblem", VbObject(2), VbValue(1));
} elsif (VbValue(0) == 2) {

FireTrigger("thatProblem", VbObject(2), VbValue(1));
} elsif (VbValue(0) == 3) {

FireTrigger("otherProblem", VbObject(2), VbValue(1));
} else {

FireTrigger("huhProblem", VbObject(2), VbValue(1));
}

This example is illustrates how to deal with a class of traps sent by some vendors in which the
trap’s source and specific number are constant. These vendor’s agents insert a problem identifier
and the source of the problem into the trap’s variable bindings. This example assumes that the
problem identifier is in the first variable binding, the source node is in the second, and any other
associated data follows in successive positions.
Chapter 9, Using Trap Masks 185

Documenting a Trap Mask
Documenting a Trap Mask
This section explains how to add documentation (notes) to a trap mask and what should be covered
in that documentation.

How to Create Notes for a Trap Mask

You can add notes to a trap mask by following the procedure outlined in this subsection.

� To add notes to a trap mask:

1. From the client’s Admin menu, choose Mask List.

NerveCenter displays the Mask List window.

2. Select the Open button.
186 Designing and Managing Behavior Models

Documenting a Trap Mask
The Mask Definition window appears.

3. Make sure that your mask is not enabled.

4. In the Mask Definition window, select the Notes button.
Chapter 9, Using Trap Masks 187

Documenting a Trap Mask
The Mask Notes window is displayed.

5. Enter your documentation for the trap mask by typing in this window. See the section What to
Include in Notes for a Trap Mask on page 188 for information on what type of information you
should enter here.

6. Select the OK button at the bottom of the Mask Notes window.

The Mask Notes window is dismissed.

7. Select the Save button in the Mask Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who opens
the definition for your mask and selects the Notes button.

What to Include in Notes for a Trap Mask

We recommend that you include the following information in the notes for your trap mask:

� Purpose of the mask

� Associated alarms

� Vendor-specific information (if appropriate)

� Description of the trigger function (if appropriate)
188 Designing and Managing Behavior Models

Documenting a Trap Mask
For example, let’s consider the trap mask shown in Figure 9-6 and Figure 9-7.

Figure 9-6. Basic Definition

Figure 9-7. Trigger Function
Chapter 9, Using Trap Masks 189

Enabling a Trap Mask
The notes for this trap mask should look something like this:

Purpose: Detects a trap indicating that a Frame Relay virtual circuit
has changed states.
Related alarms: IF-ifFramePVCStatus. This alarm tracks whether the
Frame Relay Permanent Virtual Circuit interface is active or inactive.
Vendor information: The trap of interest has an Enterprise of
1.3.6.1.2.1.10.32 (the Frame Relay group) and a Specific trap number
of 1. The second variable binding contains the value of
frCircuitState, which indicates whether a virtual circuit is invalid
(1), active (2), or inactive (3).
Trigger function: If frCircuitState equals 2, the function fires the
trigger If-FramePVCUp, and if frCircuitState equals 3, it fires
If-FramePVCDown.

Enabling a Trap Mask
For a trap mask to become functional, two conditions must be met:

� The trap mask must be enabled.

� There must be an enabled alarm with a pending state transition that can be affected by the
mask.

This section explains how to enable a trap mask.

� To enable a trap mask:

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.

2. Select the mask you want to enable from the list.

The Open button becomes enabled.
190 Designing and Managing Behavior Models

Enabling a Trap Mask
3. Select the Open button.

The Mask Definition window is displayed and shows the definition of the mask you selected.

4. Select the On radio button.

5. Select the Save button.

The trap mask is now enabled.

Tip You can also enable a trap mask by selecting a mask in the Mask List window, pressing the
right mouse button while your cursor is over the entry for the mask, and choosing On from
the popup menu.
Chapter 9, Using Trap Masks 191

Enabling a Trap Mask
192 Designing and Managing Behavior Models

10
Using Other Data Sources
For the most part, NerveCenter behavior models detect network and system conditions by using
polls and trap masks to poll SNMP agents and respond to SNMP traps, respectively. Thus, a
behavior model’s main source of information is devices running SNMP agents. However,
NerveCenter behavior models can obtain data from other sources as well.

For example, a behavior model on one NerveCenter server can receive information from a second
NerveCenter server. The second server uses an Inform alarm action to notify the the behavior
model on the first server of a condition it has detected. This Inform action involves sending what
appears to be an SNMP trap to the first server. Actually, the message is not an SNMP trap—it is
sent via TCP rather than UDP—but the behavior model receiving it treats it exactly as if it were a
trap.

NerveCenter behavior models can also receive input from Hewlett Packard’s IT/Operations.
IT/Operations manages a variety of elements: applications, databases, systems, and networks.
IT/Operations can use NerveCenter to correlate the conditions it detects. To communicate with
NerveCenter, IT/Operations sends messages containing information about detected conditions. On
the NerveCenter side, a behavior model reads these messages using a mask that is similar to a trap
mask, but is tailored to handle IT/Operations messages. After correlating events detected by
IT/Operations, NerveCenter can send a message to IT/Operations using an alarm action called
Inform OpC (IT/Operations was formerly called OperationsCenter).

Finally, NerveCenter behavior models can obtain information about network conditions from
NerveCenter itself. In particular, when NerveCenter sends an SNMP or ICMP message to a device
and the message results in an error (perhaps because the node is unreachable), NerveCenter can
notify a behavior model of this condition. NerveCenter does this by using what are called built-in
triggers, such as NODE_UNREACHABLE, which can cause state transitions in an alarm just as
other triggers do. These triggers are necessary because devices that are down or unreachable cannot
respond normally to NerveCenter polls, or send SNMP traps to NerveCenter.
193

For further information about these additional sources of input, see the following sections:

Section Description

NerveCenter’s Built-In Triggers
on page 195

Discusses what trigger NerveCenter can fire automatically and how to use
these triggers in behavior models.

Another NerveCenter on
page 204

Explains how a behavior model on one NerveCenter server can inform
another server of a condition it has detected.

HP OpenView IT/Operations on
page 209

Explains how to use an OpC mask to interpret a message sent from
IT/Operations to NerveCenter and how to notify IT/Operations of a
condition detected by NerveCenter.
194 Designing and Managing Behavior Models

NerveCenter’s Built-In Triggers
NerveCenter’s Built-In Triggers
When NerveCenter requests a poll, the SNMP GetRequest or the ping that the poll initiates is
placed on either NerveCenter’s pending SNMP requests list or pending ICMP requests list.
NerveCenter waits for a reply from the node or the node’s SNMP agent (or from an intervening
router). If the node or its SNMP agent sends a non-error reply, then NerveCenter evaluates the poll
condition and fires the appropriate trigger.

However, if the node or its SNMP agent makes no response or returns an error—depending upon
the circumstances—NerveCenter will either retry the request or fire one of its built-in triggers.
Those conditions that cause NerveCenter to fire its built-in triggers can be broken down into the
following categories:

� SNMP Requests on page 195

� Ping Requests on page 196

� Matching Errors with Pending SNMP and Ping Requests on page 198

� Multi-homed Nodes on page 199

Note NerveCenter uses all uppercase letters to designate built-in trigger names.

For particular information about NerveCenter’s built-in triggers, see A List of Built-In Triggers on
page 199.

For information about the order in which NerveCenter fires built-in triggers, see Built-in Trigger
Firing Sequence on page 197.

SNMP Requests

NerveCenter retries SNMP requests as many times as configured or until a reply arrives on the
SNMP or ICMP socket that NerveCenter can match to a pending request. (NerveCenter uses the
number of retries and retry interval specified on the SNMP tab in the NerveCenter Administrator.
Refer to the Managing NerveCenter guide or Administrator help for details.)

If the reply is an SNMP error, NerveCenter does not retry the request but returns three built-in
triggers with the poll: an ERROR trigger, followed by an SNMP_ERROR trigger, and then finally the
appropriate SNMP built-in error trigger. (See A List of Built-In Triggers on page 199, for more
information.)

If NerveCenter receives no response after the configured number of retries, then NerveCenter fires
two built-in triggers: ERROR, followed by SNMP_TIMEOUT. For more information about the order in
which NerveCenter fires built-in triggers, see Built-in Trigger Firing Sequence on page 197.
Chapter 10, Using Other Data Sources 195

NerveCenter’s Built-In Triggers
Ping Requests

NerveCenter retries ICMP requests as many times as configured or until NerveCenter receives a
good, non-error response that it can match to a pending ICMP request. (NerveCenter uses the
number of retries and retry interval specified on the SNMP tab in the NerveCenter Administrator.
Refer to the Managing NerveCenter guide or Administrator help for details.) If NerveCenter
receives no response after the configured number of retries, then NerveCenter fires two built-in
triggers: ERROR, followed by ICMP_TIMEOUT. For more information about the order in which
NerveCenter fires built-in triggers, see Built-in Trigger Firing Sequence on page 197.

After the configured number of retries is exceeded, NerveCenter examines the error list, determines
which of the matching errors occurred most often, and selects the last packet received from that set.
If there is a tie between two or more types of errors, NerveCenter selects the last error packet
received. (NerveCenter does not accumulate timeouts. One or more timeouts is counted as only one
timeout.)

Error details are stored in ICMP/IP fields that NerveCenter includes with each instance of
ICMP_ERROR that it fires. Using a Perl subroutine or a NerveCenter poll expression, you can extract
this data (Type, Code, Destination Address, and Source Address) to learn more specific
information about the ICMP error that occurred.

The exception to this rule is when NerveCenter receives an ICMP error that contain values for a
net, host, or port unreachable condition (where the ICMP fields Type = 3 and Code = 0, 1, or 3).
In this situation, NerveCenter fires an ERROR built-in trigger first, followed by an ICMP_ERROR
trigger, and then finally either a NET_UNREACHABLE, NODE_UNREACHABLE, or
PORT_UNREACHABLE built-in trigger.

If the poll times out, NerveCenter fires two built-in triggers: ERROR, followed by either an
ICMP_TIMEOUT or SNMP_TIMEOUT trigger.

Multiple Errors Examples

For example, you poll a node with addresses A1, A2, A3, A4 and A5 with the number of retries set
to three in the NerveCenter Administrator. The replies are as follows:

Original response = ICMP error E1 from address A1

Response from First retry = ICMP error E1 from address A2

Response from Second retry = no reply within retry interval from address A3

Response from Third retry = ICMP error E2 from address A4

Even though error E4 (third retry) was the last error received, NerveCenter discards it and uses
error E1 to produce a response, because it occurred most often. The actual data packet that
NerveCenter returns with error E1 is from the first retry, because NerveCenter retains only the last
packet for each error code. (The packet from the first retry overwrote the packet from the original
response because their error codes matched.)
196 Designing and Managing Behavior Models

NerveCenter’s Built-In Triggers
In this example if any of the ICMP errors contain values for a net, host, or port unreachable
condition (where the ICMP fields Type = 3 and Code = 0, 1, or 3), NerveCenter fires an ERROR
built-in trigger first, followed by an ICMP_ERROR trigger, and then finally either a
NET_UNREACHABLE, NODE_UNREACHABLE, or PORT_UNREACHABLE built-in trigger. If error E1 is
any other ICMP error, then NerveCenter fires two triggers: first, an ERROR built-in trigger, followed
by an ICMP_ERROR built-in trigger that contains data from the first retry packet. For more
information about the order in which NerveCenter fires built-in triggers, see Built-in Trigger Firing
Sequence on page 197.

Consider a second example in which the replies are as follows:

Original response = ICMP error E1 from address A1

Response from First retry = ICMP error E2 from address A2

Response from Second retry = ICMP error E3 from address A3

Response from Third retry = no reply within retry interval from address A4

NerveCenter uses error E3 to produce a response because it was the last error received, and no error
type occurred more than once. Even though a timeout occurred on the last response, NerveCenter
discards it because an error takes precedence over a timeout.

Built-in Trigger Firing Sequence

Table 10-1 shows the order in which NerveCenter fires built-in triggers.

Table 10-1. NerveCenter Built-in Trigger Firing Sequence

If the First Trigger Fired
is an...

Then the Second Trigger
Fired
Can Be an...

And the Third Trigger Fired
Can Be a...

ERROR SNMP_ERROR Specific SNMP built-in trigger

ERROR ICMP_ERROR None or, NET_UNREACHABLE,
or NODE_UNREACHABLE, or
PORT_UNREACHABLE

ERROR SNMP_TIMEOUT None

ERROR ICMP_TIMEOUT None

ERROR CANNOT_SEND None

RESPONSE Specific non-built-in trigger or
None

None

INFORM_CONNECTION_DOWN None None

INFORM_CONNECTION_UP None None

INFORMS_LOST None None
Chapter 10, Using Other Data Sources 197

NerveCenter’s Built-In Triggers
Matching Errors with Pending SNMP and Ping Requests

Each poll packet that NerveCenter sends on a socket includes a unique identifier (the IP field
Sequence Number). When a poll returns ICMP errors within its configured number of retries,
NerveCenter collects the error messages that are returned. Each error message includes the
sequence number as well as the destination address of the associated node. Certain fields in the
ICMP error packet enable NerveCenter to attempt to match SNMP/ICMP error messages with a
poll’s pending SNMP/ping requests as follows:

� NerveCenter compares a reply on the SNMP socket to its list of pending SNMP requests and
attempts to match the reply with the sequence number of an SNMP request. If a match cannot
be found with a pending SNMP request, then NerveCenter discards the reply.

� NerveCenter compares a reply on the ICMP socket to its list of pending ICMP requests and
attempts to match the reply with the sequence number of an ICMP request. Table 10-2
summarizes how NerveCenter attempts to match ICMP replies to ICMP pending requests:

If NerveCenter cannot match the sequence number of an ICMP reply with any pending ICMP
requests, but NerveCenter recognizes the destination address, the reply is saved because it
might be an error response to an SNMP request for that node; therefore, at regular intervals,
NerveCenter compares the destination address of saved ICMP error replies with pending
SNMP requests. NerveCenter attempts to match each ICMP reply with the destination address
of the oldest pending SNMP request. Only after attempting to match ICMP replies with both
pending ICMP and SNMP requests does NerveCenter finally discard the reply when it finds no
matches.

UNKNOWN_ERROR None None

Table 10-1. NerveCenter Built-in Trigger Firing Sequence (continued)

If the First Trigger Fired
is an...

Then the Second Trigger
Fired
Can Be an...

And the Third Trigger Fired
Can Be a...

Table 10-2. Matching ICMP Replies with ICMP Requests

Sequence
Number Match?

Destination
Address In DB?

Action

Yes Yes NerveCenter fires the appropriate built-in trigger for the poll.

No Yes NerveCenter saves reply to attempt to match with a pending
SNMP request.

No No NerveCenter discards the reply.
198 Designing and Managing Behavior Models

NerveCenter’s Built-In Triggers
Multi-homed Nodes

Polling multi-homed nodes will cause NerveCenter to rotate through the address list for that node
in the following manner. If the first address returns an ICMP error response, then NerveCenter flags
that address as “down” and will not retry the address until NerveCenter has tried all other addresses
for this node.

Upon each retry of a poll, NerveCenter chooses the next IP address to poll. If a node has more
addresses than the number of allowable retries, then second or subsequent polls of that node will
use the current address if it is “up” or the next un-tried address in the list. If all addresses have been
tried, then the “down” addresses will be used again. For an SNMP error, NerveCenter flags the
address as “up” because NerveCenter did receive a response from the node’s agent.

A List of Built-In Triggers

Table 10-3 lists all the built-in triggers that NerveCenter can fire.

Note NerveCenter uses all uppercase letters to designate built-in trigger names.

Table 10-3. Built-In Triggers

Trigger Name Meaning

CANNOT_SEND A local error occurred while NerveCenter was trying to send an
SNMP message.

ERROR An SNMP or ICMP request did not result in a valid response. After
firing the ERROR trigger, NerveCenter fires a second trigger that
indicates the specific nature of the error.

ICMP_ERROR Indicates an ICMP error. The ICMP_ERROR trigger contains the
ICMP/IP fields from the error message.

ICMP_TIMEOUT NerveCenter sent an ICMP ping to a node and did not receive a
response. This trigger generally indicates that the node in question
is down.

NerveCenter uses the number of retries and retry interval specified
on the SNMP tab in the Administrator. Refer to the Managing
NerveCenter guide for details.

ICMP_UNKNOWN_ERROR NerveCenter sent an ICMP ping to a node and received an invalid
response. This trigger is no longer used except for the purpose of
backward compatibility with version 3.5. We recommend you use
it sparingly in the current version.

INFORM_CONNECTION_DOWN A NerveCenter Inform host connection with OVPA is down.

INFORM_CONNECTION_UP A NerveCenter Inform host connection with OVPA was down but
is now back up.
Chapter 10, Using Other Data Sources 199

NerveCenter’s Built-In Triggers
INFORMS_LOST The number of NerveCenter Informs that were unacknowledged
and lost, usually while the inform host connection with OVPA was
down.

NET_UNREACHABLE Indicates that the IP routing layer could not find a route to the
network containing the polled node, usually because at least one
router was down. This trigger indicates nothing about the status of
the node.

This trigger can be issued only if you have a router between the
workstation running NerveCenter and the polled node.

NODE_UNREACHABLE Indicates that the IP routing layer could not find a route to the
destination node. This trigger indicates nothing about the status of
the node.

This trigger can be issued only if you have a router between the
workstation running NerveCenter and the polled node.

PORT_UNREACHABLE NerveCenter sent a message to a node, and there was no response
from the port to which the message was sent.

RESPONSE NerveCenter sent an SNMP message and received a valid response
from the agent on the destination node.

SNMP_AUTHORIZATIONERR An SNMP v3 authorization error caused because there is a
mismatch between one or all of the rows of vacmAccessTable
and the packet. Reasons include: context name mismatch
(vacmAccessContextPrefix); security model is not used
(vacmAccessSecurityModel); incorrect security level
(vacmAccessSecurityLevel); unauthorized to read the MIB
view for the SNMP context (vacmAccessReadViewName);
unauthorized to write to the MIB view for the SNMP context
(vacmAccessWriteViewName); unauthorized to notify the
MIB view for the SNMP context
(vacmAccessNotifyViewName)

SNMP_BADVALUE NerveCenter tried to set the value of an attribute in a MIB, but the
value it supplied was inappropriate for the attribute. The value may
have been of the wrong type, of the wrong length, or invalid for
some other reason.

SNMP_DECRYPTION_ERROR The SNMP v3 engine dropped packets because they could not be
decrypted. The 32-bit counter,
usmStatsDecryptionErrors, is greater than zero.

SNMP_ENDOFTABLE NerveCenter fires SNMP_ENDOFTABLE when it finds no more
rows while performing an SNMP walk of a MIB table. For
example, you could walk IfTable to determine the number of
DSO interfaces a node contains.

Table 10-3. Built-In Triggers (continued)

Trigger Name Meaning
200 Designing and Managing Behavior Models

NerveCenter’s Built-In Triggers
SNMP_GENERR A GetRequest, GetNextRequest, or SetRequest failed for some
unknown reason (general error).

SNMP_NOSUCHNAME NerveCenter sent to an SNMP agent a GetRequest, a
GetNextRequest, or a SetRequest, and the agent that was contacted
was unable to perform the requested operation because:

� The name of the attribute to be read did not match exactly the
name of an attribute available for get operations in the relevant
MIB view

� The name of the attribute to be read did not lexicographically
precede the name of an attribute available for get operations in
the relevant MIB view

� The attribute to be set was not available for set operations in
the relevant MIB view

SNMP_NOT_IN_TIME_WINDOW The SNMP v3 engine dropped packets because the boots and
timeticks sent in the PDU appeared outside of the authoritative
SNMP agent’s time window. The 32-bit counter,
usmStatsNotInTimeWindows, is greater than zero.

SNMP_READONLY The error readOnly is not defined in RFC 1157. However, some
vendors’ agents do use this error-status code. As the name implies,
the error usually indicates that an agent has received a SetRequest
(from NerveCenter, in this case) for an attribute whose access type
is read only.

SNMP_TIMEOUT NerveCenter sent an SNMP message to an agent and did not
receive a response. This trigger indicates either that a node’s
SNMP agent is down or that the node itself is down.

NerveCenter uses the number of retries and retry interval specified
on the SNMP tab in the Administrator. Refer to the Managing
NerveCenter guide for details.

SNMP_TOOBIG An SNMP agent did not respond normally to a GetRequest,
GetNextRequest, or SetRequest from NerveCenter because the size
of the required GetResponse would have exceeded a local
limitation.

SNMP_UNAVAILABLE_CONTEXT The SNMP v3 engine dropped packets because the context
contained in the message was unavailable. The 32-bit counter,
snmpUnavailableContexts, is greater than zero.

SNMP_UNKNOWN_CONTEXT The SNMP v3 engine dropped packets because the context
contained in the message was unknown. The 32-bit counter,
snmpUnknownContexts, is greater than zero.

Table 10-3. Built-In Triggers (continued)

Trigger Name Meaning
Chapter 10, Using Other Data Sources 201

NerveCenter’s Built-In Triggers
One additional trigger, USER_RESET, is not available from the list of built-in triggers in
NerveCenter. NerveCenter fires USER_RESET to trigger another state for an existing alarm
instance when you reset the alarm instance using the right-click pop-up menu in the Alarm
Summary or Aggregate Alarm Summary windows.

SNMP_UNKNOWN_ENGINEID The SNMP v3 engine dropped packets because they referenced an
snmpEngineID that was not known to the SNMP v3 engine. The
32-bit counter, usmStatsUnknownEngineIDs, is greater than
zero.

SNMP_UNKNOWN_USERNAME The SNMP v3 engine dropped packets because they referenced a
user that was not known to the SNMP v3 engine. The 32-bit
counter, usmStatsUnknownUserNames, is greater than zero.

SNMP_UNSUPPORTED_SEC_LEVEL The SNMP v3 engine dropped packets because the requested
security level is unknown or unavailable. The 32-bit counter,
usmStatsUnsupportedSecLevels, is greater than zero.

SNMP_WRONG_DIGEST The SNMP v3 engine dropped packets because they didn’t contain
the expected digest value. The 32-bit counter,
usmStatsWrongDigests, is greater than zero.

UNKNOWN_ERROR Some other error occurred.

Table 10-3. Built-In Triggers (continued)

Trigger Name Meaning
202 Designing and Managing Behavior Models

NerveCenter’s Built-In Triggers
An Example Using Built-In Triggers

This section looks at how some of the built-in triggers are used in one of NerveCenter’s predefined
alarms: IcmpStatus. The behavior model of which this alarm is a part repeatedly pings a node to
determine its status.

Note To make the ICMP status behavior model functional, you must turn on the polls IS_IcmpPoll
and IS_IcmpFastPoll and the alarm IcmpStatus.

Figure 10-1. IcmpStatus Alarm

We won’t look at every transition in this alarm, but let’s look at the alarm’s basic design.

While the alarm is in the Ground state, NerveCenter is looking for a:

� An error response
(Not an nl-ping-response nor a port unreachable—both indicate that the node is up)

� No response
(ICMP timeout indicated by the built-in trigger ICMP_TIMEOUT)

If NerveCenter receives an error response or a timeout, the alarm transitions to the Error state.

From the Error state, several things can happen:

� If the node responds to a ping (in which case, either the ISnodeUp or ISnodeUpFast trigger
will be fired by a poll), the alarm transitions back to Ground.

� If the alarm receives another error response, it transitions to the Unreachable state. When the
alarm transitions to this state, it puts the node being monitored in a suppressed state.

� If the alarm receives another ICMP_TIMEOUT trigger, it transitions to the Down state. On
this transition, the alarm puts the node in a suppressed state and sends a message about the
problem to a network management platform.

This is only a cursory look at the IcmpStatus alarm, but it should give you an idea of how alarms
can make use of NerveCenter’s built-in triggers.
Chapter 10, Using Other Data Sources 203

Another NerveCenter
Another NerveCenter
The section Using Multiple NerveCenter Servers on page 23 introduced the idea of using
NerveCenter servers at the various sites within an enterprise to monitor the network conditions at
those sites and then to forward important events on to a central NerveCenter server. In this
situation, the central server can correlate the events it receives from the remote servers, take
appropriate corrective actions, and notify a network management platform of any serious problems
it discovers.

Remote servers communicate with the central server using an alarm action called Inform—the
same action used to communicate with a network management platform. (For complete information
about the Inform alarm action, see the section Inform on page 273.) When a remote server performs
this type of Inform action, it sends to the central server what looks like an SNMP trap. This trap’s
specific trap number is determined by the person who sets up the alarm that initiates the Inform
action. The trap also contains a set of variable bindings that include information about the alarm
transition that led to the Inform being sent.

Note These Inform “traps” are not true SNMP traps. Because their receipt by the central server
must be guaranteed, they are sent via TCP, not UDP. However, the receiving server
processes them as if they were SNMP traps.

The central server handles the traps sent from remote servers just as it handles other traps: by using
a trap mask. The only things special about the trap masks you use to receive traps from other
NerveCenter servers are that:

� For the trap’s enterprise OID, you must supply the OID of the NerveCenter MIB

� For the trap mask’s specific trap number, you must supply the specific trap number used in the
Inform action

For further information about receiving traps from other NerveCenter servers, see the following
sections:

� Creating a Trap Mask on page 205

� Variable Bindings for NerveCenter Informs on page 207

� An Example Trigger Function on page 209
204 Designing and Managing Behavior Models

Another NerveCenter
Creating a Trap Mask

This section explains specifically how to create a trap mask designed to receive an Inform trap sent
by a remote NerveCenter server. For general information about creating trap masks, see the section
Defining a Trap Mask on page 176.

� To create a trap mask for an Inform trap:

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.

2. Select the New button.

The Mask Definition window is displayed.
Chapter 10, Using Other Data Sources 205

Another NerveCenter
3. Type a unique name for your trap mask in the Name field.

Note The maximum length for trap mask names is 255 characters.

4. Select EntSpecific = 6 from the Generic drop-down list.

All traps you receive from remote NerveCenter servers are enterprise-specific traps.

5. Select the From Only radio button.

6. In the Enterprise field, type 1.3.6.1.4.1.78.

This value will match the value in the Enterprises field of all Inform traps sent from remote
NerveCenter servers.

7. Type a specific trap number in the Specific field. This value must match the Specific Number
used by the remote server’s Inform action.

If you want to fire a single trigger if the Generic, Enterprise, and Specific values in the Inform
trap match the corresponding values in your trap mask, proceed with step 8. Otherwise, skip to
step 11.

8. Select the Simple Trigger radio button.

9. Type a trigger name in the Simple Trigger field, or select a trigger from the Simple Trigger
drop-down list.

10. Select the Save button.

This is the end of the procedure for trap masks that will fire a simple trigger. Be sure to enable
your mask when you’re ready to use it.

11. Select the Trigger Function radio button.

12. Select the Trigger Function tab.
206 Designing and Managing Behavior Models

Another NerveCenter
The Trigger Function tab is displayed.

13. Enter your trigger function in the text area on the Trigger Function page.

For instructions on writing a trigger function, see the section Writing a Trigger Function on
page 180.

14. Select the Save button.

Be sure to enable your mask when you’re ready to use it.

Variable Bindings for NerveCenter Informs

Depending on how its behavior models are designed, a NerveCenter detecting particular network
conditions can send Inform packets to a network management platform or even another
NerveCenter Server. Although these Inform packets use TCP/IP, they are similar in content to an
SNMP trap, containing trap numbers (generic and specific), an enterprise OID, and a
variable-binding list. The lengthy varbinds contains information about the alarm that performed the
Inform action, such as the name of alarm, the object the alarm was monitoring, and the names of
the origin and destination alarm states.

The network management platform or NerveCenter Server receiving the trap can make use of the
information in the variable bindings much the same way it would use variable bindings found in an
SNMP trap. For example, the section An Example Trigger Function on page 209 shows how a
NerveCenter server might use some of this information in a trap mask trigger function.
Chapter 10, Using Other Data Sources 207

Another NerveCenter
Table 10-4 explains the contents of this variable-binding list.

Table 10-4. Inform Trap Variable Bindings

Variable Binding Value

0 The name of the domain where NerveCenter is running

1 The name of the host machine running the NerveCenter Server

2 The name of the managed node associated with the alarm

3 The base object associated with the alarm (for example, ifEntry for a monitored
interface)

4 The base object instance associated with the alarm (for example, 4 for the
fourth interface)

5 The name of the subobject. This would include the null string if the alarm is not
associated with an alarm.

6 The property group assigned to the node or the subobject

7 The name of the alarm

8 The alarm’s property

9 The name of the trigger that caused the alarm transition

10 The state of the alarm before the transition

11 The severity of the state of the alarm prior to the transition

12 The state of the alarm after the transition

13 The severity of the state of the alarm after the transition

14 The maximum severity of all active alarms for the managed node before this
alarm transition

15 The maximum severity of all active alarms for the managed node after this
alarm transition

16 The variable bindings in the poll or trap that caused the transition. These
variable bindings are formatted as follows:
Attribute ncTransitionVarBinds =
attribute.instance=value;attribute=value;...

17 The identification number of the alarm instance
208 Designing and Managing Behavior Models

HP OpenView IT/Operations
An Example Trigger Function

This section explains how you might use an Inform trap’s variable bindings in a trigger function.
Consider this example: A poll (HighLoad) at a remote site discovers high traffic on an interface and
fires the trigger highLoad. This trigger prompts a transition from the medium state to the high state
in the alarm ifLoad. (All the objects referred to are actually shipped with NerveCenter.) As shipped,
the alarm ifLoad does not perform any actions when the transition from medium to high occurs, but
let’s say you’ve added an Inform action that uses the specific number 100005.

The ifLoad alarm (minus the Inform action) also exists at your central site. Therefore, when the
Inform trap arrives, you want a trap mask to fire a trigger identical to the one fired at the remote
site. In this way, the ifLoad alarm at your central site will stay in sync with the alarm at your remote
site.

Here’s the trigger function you would have to use in the trap mask at your central site:

FireTrigger("highLoad", VbValue(3).’.’.VbValue(4), VbValue(2));

If you recall, the arguments to FireTrigger() are:

� The name of the trigger

� The trigger’s subobject (base object plus attribute)

� The trigger’s node

The second and third arguments are being retrieved from the list of variable bindings in the Inform
trap. For a complete list of the variable bindings included in an Inform trap, see the section Variable
Bindings for NerveCenter Informs on page 207.

HP OpenView IT/Operations
The section Integration with Network Management Platforms on page 24 explained that Hewlett
Packard OpenView IT/Operations can be integrated with NerveCenter. Using these two products
together, you can detect, correlate, and respond to network-, system-, and application-related
problems in distributed multi-vendor environments.

Here’s how you integrate the two products. On the IT/Operations (IT/O) side, you install IT/O
agents on the devices you want to monitor using IT/O. You also push to these devices a set of
templates describing the conditions that you want IT/O to detect. If you’re using IT/O with
NerveCenter, generally you should modify each condition in a template to indicate that IT/O should
divert messages concerning that condition to NerveCenter instead of handling the messages itself.
If you make this change, messages concerning the conditions in question will not appear in IT/O’s
message browser.

On the NerveCenter side, you must specify the system on which the IT/O server is running as your
OpC host. Then, you can set up OpC message masks to capture IT/O messages that are forwarded
to NerveCenter and meet certain criteria. These OpC message masks are similar to trap masks and
can fire triggers that cause alarm transitions.
Chapter 10, Using Other Data Sources 209

HP OpenView IT/Operations
Note For details on how to configure IT/Operations and NerveCenter to work together, see the
manual Integrating NerveCenter with a Network Management Platform.

After NerveCenter has correlated a set of events reported by IT/O, the NerveCenter alarm that
correlated the events can take corrective actions, as usual. Also, the alarm can send a message to
IT/O describing the problem it has detected. To send this message the alarm uses the Inform OpC
action. This action is discussed fully in the section Inform OpC on page 276.

Perhaps a simple example will make this interaction clearer. Suppose that you are monitoring a
Solaris workstation and that you want to detect three unsuccessful attempts to switch users (su)
within a minute. IT/O’s Su template enables you detect an unsuccessful su and to take some action;
however, IT/O can’t correlate a series of unsuccessful su’s. Therefore, you might divert messages
about unsuccessful su’s to NerveCenter and have a NerveCenter behavior model detect the
condition you’re looking for. This behavior model would consist primarily of an OpC mask and an
alarm. The mask would look for IT/O messages containing “/bin/su(1) Switch User” in the
Application field and “Security” in the Message Group field (or something similar to this). When it
saw a message with this content, the mask would fire a trigger and cause a transition in the alarm
that was monitoring unsuccessful su’s. If this alarm detected three unsuccessful su’s within a
minute, it would use the Inform OpC alarm action to notify IT/Operations of the condition.

For further information about receiving messages from IT/Operations, see the following sections:

� Listing OpC Masks on page 211

� Defining an OpC Mask on page 212

� Writing an OpC Trigger Function on page 215

� Documenting an OpC Mask on page 218

� Enabling an OpC Mask on page 220
210 Designing and Managing Behavior Models

HP OpenView IT/Operations
Listing OpC Masks

This section explains how to display a list of the OpC masks currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular OpCmask.

For information on creating a new OpC mask, see Defining an OpC Mask on page 212.

� To display a list of OpC masks and then display a particular mask’s definition:

1. From the client’s Admin menu, choose OpC Mask List.

The OpC Mask List window is displayed.

This window lists all OpC masks and provides a brief definition of each. For each OpC mask,
the window specifies a name and the following information:

� Whether the mask is currently enabled.

� The application related to the message.

� The name of the message group to which the message belongs, for example, Backup or
Database.

� The message type of the message.

� The object that was affected by, detected, or caused the message. For example, the object
may be a printer that has stopped accepting requests or a backup device that is
experiencing a problem.

� The severity of the condition described in the message.

� The name of the trigger that is fired when NerveCenter receives a message that matches
the contents of the OpC mask.

2. Select an OpC mask from the mask list.

3. Select the Open button
Chapter 10, Using Other Data Sources 211

HP OpenView IT/Operations
NerveCenter displays the OpC Mask Definition window.

The mask defined in this figure is named SuFailure. It is looking for a message from
IT/Operations concerning a “Bad su” condition. Note that the Object field is empty since the
message’s object is variable: the object is the user who unsuccessfully attempts to switch users.

Defining an OpC Mask

This section outlines the procedure for creating an OpC mask.

� To define a new OpC mask:

1. From the client’s Admin menu, choose OpC Mask List.

NerveCenter displays the OpC Mask List window.
212 Designing and Managing Behavior Models

HP OpenView IT/Operations
2. Select the New button.

The OpC Mask Definition window appears.

3. In the Name text field, type a unique name for the OpC mask.

Note The maximum length for OpC mask names is 255 characters.

All of the window’s input areas are enabled.

4. In the Application text field, enter the application that the message relates to, or leave this field
blank.

For example, if a message concerns an unsuccessful attempt to switch users, the associated
application is su.

Note If you leave this field empty, your OpC mask will not look for a message with an empty
Application field, but will disregard the contents of the Application field when making its
comparisons. An analogous thing happens if you leave the Group, Type, Object, or Severity
field blank.

If you’re not sure what to enter in the Application field, send the message you’re interested in
to IT/Operations, and look at it in the Message Details window. The value you use in your
mask should correspond to the contents of the Application field in this window. (You can use
the same technique to obtain the values for the Group, Type, Object, and Severity fields.)

5. In the Group text field, enter the message group to which a message belongs, or leave this field
blank.
Chapter 10, Using Other Data Sources 213

HP OpenView IT/Operations
Message groups are a mechanism used to classify messages. For example, the default message
group Backup can be used to identify messages generated by applications that are used for
backing up data or by devices that are part of a backup system. Operators are assigned groups
of messages to deal with.

The default message groups are Backup, Database, ITO, OS, Output, Performance, Security,
Job, Network, SNMP, and Misc.

6. In the Type text field, enter the message’s message type, or leave this field blank.

Message types, like message groups, are used to classify messages. However, whereas
message groups are used to group messages that a single operator should work with, message
types are used to label messages so that they can be easily identified by an event-correlation
engine.

7. In the Object text field, enter the object that caused, detected, or was affected by the condition
that the message describes, or leave this field blank.

For example, an object can be an operator, an application, or a node.

8. In the Severity text field, enter the severity of the condition described in the IT/Operations
message, or leave this field blank.

The possible severities are Unknown, Normal, Warning, Minor, Major, and Critical.

9. Select one of the following Trigger Type radio buttons:

� OpC Simple Trigger—your OpC mask can determine what trigger it wants to fire solely
by reading a message’s application, message-group, message-type, object, and severity
fields. When the OpC mask sees a message that meets its requirements, it will fire a
trigger with the name specified in the Simple Trigger field.

� OpC Trigger Function—your OpC mask must test the contents of one or more fields
before determining which trigger to fire.

If you select the OpC Simple Trigger radio button, the Simple Trigger list box is enabled.

10. In step 9, if you selected:

� OpC Simple Trigger—enter in the Simple Trigger text field the name of the trigger you
want the OpC mask to fire if it finds a message that matches its requirements. You can
either type in the name of a new trigger or choose a trigger from the list of existing
triggers.

� OpC Trigger Function—select the OpC Trigger Function tab, and enter a trigger
function on the OpC Trigger Function page.

This trigger function is a Perl subroutine that you can use to check the information in the
message and to fire appropriate triggers. For complete information on writing trigger
functions, see the section Writing an OpC Trigger Function on page 215.
214 Designing and Managing Behavior Models

HP OpenView IT/Operations
11. Select the Save button at the bottom of the OpC Mask Definition window to save your mask.

Tip Remember that you must enable the trap mask (by setting Enabled to On) before using it in a
behavior model. While the OpC mask is disabled, it is not used in the examination of any
incoming IT/O messages. This means that any behavior models that use this mask as the sole
source of triggers are also disabled.

Writing an OpC Trigger Function

If an OpC mask cannot completely describe the type of message it is looking for by specifying the
contents of the message’s Application, Group, Type, Object, and Severity fields, it must contain a
trigger function. This function, which you write using Perl 5, can include additional conditions that
the message must meet, and it can fire different triggers as appropriate.

Most OpC trigger functions are very similar in structure. They follow this pattern:

if (condition1) {
FireTrigger(arguments);

}
elsif (condition2) {

FireTrigger(arguments);
}
else {

FireTrigger(arguments);
}

Note The maximum length for trigger names is 255 characters.

The conditions can test the value of any the following message attributes:

� Node

� Application

� Message group

� Message type

� Object

� Severity

� Message text

� Message ID

For example, suppose that you want to create an OpC mask that detects IT/O messages concerning
unsuccessful attempts to switch users to root. This mask would require a trigger function that
checked a message’s message text for the string “Bad switch user to root.” (For details on how to
implement this trigger function, see the section Examples of OpC Trigger Functions on page 217.)
Chapter 10, Using Other Data Sources 215

HP OpenView IT/Operations
To assist you in writing OpC trigger functions, NerveCenter provides:

� A set of functions that enable you to perform string comparisons and to fire triggers.

� A set of predefined variables that give you access to the information in an IT/O message.

� A pop-up help menu, accessible from the OpC trigger function editing area, that lists all the
functions and variables available for use the OpC trigger functions.

For further information about these predefined functions and variables and the pop-up help menu,
see the following sections:

� Functions for Use in OpC Trigger Functions on page 216

� Variables for Use in OpC Trigger Functions on page 216

� Using the Pop-Up Menu for Perl on page 160

Functions for Use in OpC Trigger Functions

NerveCenter provides a number of functions (actually Perl subroutines) that facilitate the writing of
OpC trigger functions. The list below indicates what types of functions are available and where you
can find detailed information about each function:

� String-matching functions. These functions enable you to determine whether a string contains
another string or a particular word. The functions are useful in conditions that test the value of
a message attribute for a substring.

For reference information about these functions, see the section String-Matching Functions on
page 159.

� FireTrigger(). This function enables you to fire a trigger from your OpC trigger function. You
can specify the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on
page 156.

Variables for Use in OpC Trigger Functions

NerveCenter defines several variables for use in OpC trigger functions. These variables contain the
values of fields in the IT/O message that NerveCenter is examining.

The complete list of variables that you can use in an OpC trigger function is shown in Table 10-5:

Table 10-5. Variables Used in OpC Trigger Functions

Variable Description

$OpcApplication Contains the value of the message’s application field.

$OpcGroup Contains the value of the message’s message-group field.

$OpcMessage Contains the value of the message’s message-text field.
216 Designing and Managing Behavior Models

HP OpenView IT/Operations
To see how these variables might be used in context, see the section Examples of OpC Trigger
Functions on page 217.

Examples of OpC Trigger Functions

This section presents a couple of example OpC trigger functions and explains what the functions
do.

Example 1

Here’s a simple example. Suppose that you’re monitoring Sun workstations for disk usage and that
you want to fire one trigger if a file server’s disk usage crosses a certain threshold and another
trigger if the disk usage at a user’s workstation crosses that threshold. The first trigger will cause an
alarm to transition to a state of Major severity, and the second will cause a transition to a state of
minor severity.

The trigger function might look like this.

if ($OpCNodeName eq "FileServer1" or
$OpCNodeName eq "FileServer2" ...) {
FireTrigger("lowDiskServer", $DefaultSubobject);

}
else {

FireTrigger("lowDiskNonserver", $DefaultSubobject);
}

Note the second argument to FireTrigger(), the subobject argument. In the context of an IT/O
message, a subobject of the form baseObject.instance makes no sense, so by default NerveCenter
uses a subobject of the form $OpCGroup.$OpCObject. This definition of a subobject enables you
to create subobject-scope alarms that are driven by triggers fired from OpC masks.

$OpcMsgId Contains the value of the message’s message-number field.

$OpcNodeName Contains the value of the message’s node field. The node referred to in
this field is the one on which the condition being reported occurred.

$OpcObject Contains the value of the message’s object field.

$OpcSeverity Contains the value of the message’s severity field.

$OpcType Contains the value of the message’s message-type field.

Table 10-5. Variables Used in OpC Trigger Functions

Variable Description
Chapter 10, Using Other Data Sources 217

HP OpenView IT/Operations
Example 2

The following trigger function looks for unsuccessful attempts to su (switch users) to root by users
who don’t have permission to become root:

if ((ContainsWord($OpCMessage, "Bad switch user to root")) and
($OpCObject ne "authorizedUser1") and
($OpCObject ne "authorizedUser2") ...) {
FireTrigger(“badSuToRoot”);

}

The call to ContainsWord() determines whether the message’s message text contains the string
“Bad switch user to root,” and the expressions containing the variable $OpCOjbect determine
whether the user who attempted the su is authorized to become root. (In this type of message, the
object field contains the name of the user who issued the su command.)

Documenting an OpC Mask

This section explains how to add documentation (notes) to an OpC mask and what should be
covered in that documentation.

How to Create Notes for an OpC Mask

You can add notes to an OpC mask by following the procedure outlined in this subsection.

� To add notes to an OpC mask:

1. From the client’s Admin menu, choose OpC Mask List.

The OpC Mask List window is displayed.

2. Select the OpC mask to which you want to add a note from the list.

3. Make sure that your OpC mask is not enabled.
218 Designing and Managing Behavior Models

HP OpenView IT/Operations
4. Select the Open button.

The OpC Mask Definition window appears.

5. In the OpC Mask Definition window, select the Notes button.

The OpC Mask Notes and Associations dialog is displayed.
Chapter 10, Using Other Data Sources 219

HP OpenView IT/Operations
6. Enter your documentation for the OpC mask by typing in this dialog. See the section What to
Include in Notes for an OpC Mask on page 220 for information on what type of information
you should enter here.

7. Select the OK button at the bottom of the OpC Mask Notes and Associations dialog.

The OpC Mask Notes and Associations dialog is dismissed.

8. Select the Save button in the OpC Mask Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who opens
the definition for your alarm and selects the Notes button.

What to Include in Notes for an OpC Mask

We recommend that you include the following information in the notes for an OpC mask:

� Purpose of the mask

� Associated alarms

� Description of the trigger function (if appropriate)

Enabling an OpC Mask

For an OpC mask to become functional, two conditions must be met:

� The OpC mask must be enabled.

� There must be an enabled alarm with a pending state transition that can be affected by the
mask.

This section explains how to enable an OpC mask.
220 Designing and Managing Behavior Models

HP OpenView IT/Operations
� To enable an OpC mask:

1. From the client’s Admin menu, choose OpC Mask List.

The OpC Mask List window is displayed.

2. Select the OpC mask you want to enable from the list.

The Open button becomes enabled.

3. Select the Open button.

The OpC Mask Definition window is displayed and shows the definition of the OpC mask you
selected.

4. Select the On radio button.
Chapter 10, Using Other Data Sources 221

HP OpenView IT/Operations
5. Select the Save button.

The OpC mask is now enabled.

Tip You can also enable an OpC mask by opening the OpC Mask List window, pressing the right
mouse button while your cursor is over the entry for the mask, and choosing On from the
popup menu.
222 Designing and Managing Behavior Models

11
Using Alarms
Alarms enable you to monitor the state of objects such as interfaces and devices. Figure 11-1
depicts the role that an alarm typically plays in a behavior model.

Figure 11-1. The Role of an Alarm in a Behavior Model

The alarm contains a state transition diagram, and transitions are caused by triggers that are usually
generated by polls and trap masks. (Triggers can also be generated by alarms.) When the alarm
manager sees a trigger whose key attributes—such as name, subobject, and node—match those of a
pending transition in an alarm, the manager causes this transition to take place. Any actions
associated with the transition are performed when the transition occurs.

Poll

Nodes

Response

Trap

Poll

Mask

Trigger

Trigger

Alarm

Behavior model
223

The remainder of this chapter explains in detail how to create and work with alarms. Refer to the
following sections:

Section Description

Listing Alarms on page 225 Explains how to display a list of the alarms currently defined in the
NerveCenter database.

Defining an Alarm on page 227 Explains the procedure for creating a new alarm.

Alarm Scope on page 230 Discusses an alarm’s scope property. This property defines what an alarm
monitors: the entire enterprise, a single device, a subcomponent of a
device such as an interface, or multipe MIB objects in a single alarm
instance.

Defining States on page 232 Explains how to define a state in an alarm’s state diagram.

Defining Transitions on page 235 Explains how to define a transition in an alarm’s state diagram.

Documenting an Alarm on
page 240

Explains how to write notes (documentation) for an alarm.

Enabling an Alarm on page 244 Explains how to turn an alarm on and off.

Correlation Expressions on
page 246

Explains how to create an alarm using a correlation expression.
224 Designing and Managing Behavior Models

Listing Alarms
Listing Alarms
This section explains how to display a list of the alarms currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular alarm.

For information on creating a new alarm, see Defining an Alarm on page 227.

� To display a list of alarms and then display a particular alarm’s definition:

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

This window lists all the currently defined NerveCenter alarms and provides a brief definition
of each. For each alarm, the window specifies a name and the following information:

� Whether the alarm is currently enabled

� The alarm’s property

� The alarm’s scope

2. Select an alarm from the alarm list.

3. Select the Open button
Chapter 11, Using Alarms 225

Listing Alarms
NerveCenter displays the Alarm Definition window.

The alarm defined in this figure is named ifLinkUpDown. Each instance of it monitors a single
interface (subobject scope) on a device whose property group contains the property ifEntry. If
NerveCenter receives a generic trap 2 for an interface, an alarm instance is instantiated, and the
current state becomes DownTrap. If a linkUp trap for the same interface arrives within three
minutes, the state returns to Ground; otherwise, the state becomes LinkDown. The state color
indicates that LinkDown is a state of Major severity.

With a little investigation, you can find out much more about this alarm. For instance, if you
right-click a transition, you’ll see a pop-up menu that enables you to find out what masks, polls,
and alarms can produce the trigger that causes the transition. Table 11-1 shows what objects can
fire the triggers that affect this alarm.

Table 11-1. Trigger Sources

Transition Related Trigger Generator

linkDown Mask: LinkDown

linkUp Mask: LinkUp

linkTimer Alarm: IfLinkUpDown
226 Designing and Managing Behavior Models

Defining an Alarm
You can also determine what actions will occur on a particular transition. Simply double-click the
transition to bring up the Transition Definition dialog. If you perform this task for each transition in
this alarm, you’ll find that the transition actions in Table 11-2have been defined.

Defining an Alarm
This section provides a high level overview of how to create a new alarm. Because creating an
alarm is a fairly involved process, you’ll need to consult some additional sections to get all the
information you need.

� To define a new alarm:

1. From the client’s Admin menu, choose Alarm Definition List.

NerveCenter displays the Alarm Definition List window.

2. Select the New button.

Table 11-2. Transition Actions

Transition Actions

linkDown (Ground to DownTrap) Fire the trigger linkTimer on a three minute delay.

linkUp (DownTrap to Ground) Clear the trigger linkTimer.

linkUp (LinkDown to Ground) None.

linkTimer (DownTrap to LinkDown) Inform a network management platform that the interface is
down.
Chapter 11, Using Alarms 227

Defining an Alarm
The Alarm Definition window appears.

3. Type a unique name for the alarm in the Name text field.

Note The maximum length for alarm names is 255 characters.

4. Select a property from the Property list box. Or leave the Property set to NO_PROP.

The property you choose helps determine whether a particular trigger can cause an alarm
instance to be instantiated or cause a transition in an existing alarm instance. Generally, the
alarm’s property must match one of the properties in the property group of the node associated
with the trigger. The property NO_PROP matches any property.

For complete information regarding the matching rules that determine whether a trigger causes
an alarm transition, see the section, Rules for Matching on page 376.

5. Select a scope from the Scope list box.
228 Designing and Managing Behavior Models

Defining an Alarm
The options are Enterprise, Instance, Node, and Subobject. Briefly, an alarm instance with
Enterprise scope monitors all the nodes managed by the NerveCenter server. An alarm instance
with Node scope monitors a single node. A subobject scope alarm monitors a subcomponent of
a node, usually an interface (subobject). Instance scope lets you monitor different base objects
in a single alarm instance.

For further information on alarm scope, see the section Alarm Scope on page 230.

6. Select the Clear Triggers for Reset To Ground or Off checkbox if you want NerveCenter to
clear any pending triggers fired by this alarm when the alarm is turned off or manually reset to
ground. The alarm might have pending triggers if you associated a Fire Trigger alarm action
with this alarm.

7. Create the alarm’s state diagram in the drawing area at the top of the Alarm Definition window.

This can be a big step. Before you actually draw the state diagram, you must design it. Your
resources for learning how to design an alarms are:

� This book.

� The book Learning How to Create Behavior Models, which includes a tutorial on creating
alarms.

� The predefined alarms that ship with NerveCenter. Looking at these alarms and reading
the notes that accompany them should give you some ideas for creating your own alarms.

Then, there are the mechanics of creating the state diagram. This subject is covered in the
following places:

� Defining States on page 232

� Defining Transitions on page 235

� Alarm Actions on page 255 for information about adding actions to alarm transitions

8. Select the Save button to save your alarm.

9. If you want to enable you alarm now, set the alarm’s Enabled status to On, and then select the
Save button again.
Chapter 11, Using Alarms 229

Alarm Scope
Alarm Scope
NerveCenter alarms can have one of four scopes: subobject, instance, node, or enterprise. A
subobject scope alarm monitors a subcomponent of a node, usually an interface (subobject).
Instance scope lets you monitor different base objects in a single alarm instance. Node scope
monitors activity on a single node, and enterprise scope monitors all managed nodes for a particular
behavior.

This is fairly straightforward, but let’s look at an example of how alarm scope might affect a
particular behavior model. Let’s say that you have a model that manages three workstations, each
of which has four interfaces.

Figure 11-2. Managed Nodes and Their Interfaces

One component of this behavior model is a poll that checks variables in each workstation’s ifEntry
table to find interfaces that are experiencing high traffic. This poll can fire a trigger up to twelve
times on any poll interval, as shown in Table 11-3.

Table 11-3. Triggers Fired by High-Traffic Poll

Node Subobject

Node 1 ifEntry.1

Node 1 ifEntry.2

Node 1 ifEntry.3

Node 1 ifEntry.4

Node 2 ifEntry.1

Node 2 ifEntry.2

Node 2 ifEntry.3

Node 2 ifEntry.4

Node 3 ifEntry.1

Node 3 ifEntry.2

Node 1

Four interfaces

Node 2

Four interfaces

Node 3

Four interfaces
230 Designing and Managing Behavior Models

Alarm Scope
The behavior model also includes the alarm whose state diagram is shown in Figure 11-3:

Figure 11-3. High-Traffic Alarm

A beep action is associated with the highLoad transition.

Assuming that you’ve set the alarm’s property properly, you’ve enabled both the poll and the alarm,
and all interfaces are experiencing high traffic, how many beeps will you hear?

The answer depends on your alarm’s scope. If the alarm has subobject scope, twelve alarm
instances will be created, and you’ll hear twelve beeps, one per interface. Similarly, for instance
scope, twelve instances will occur and beep. The main difference between subobject and instance
scope is that, with instance scope, you could add another transition to the alarm to monitor some
base object other than ifEntry.

If the alarm has node scope, three alarm instances will be created, and you’ll hear three beeps. Once
an alarm instance for a node transitions out of the Ground state—upon receipt of the first highLoad
trigger for that node—any subsequent highLoad triggers that refer to that node have no effect.
Finally, if the alarm has enterprise scope, only one alarm instance is created, and you’ll hear just
one beep.

For behavior models that contain just one alarm, choosing an alarm scope is usually simple. Just
state the condition you want to be able to detect:

� “I want to be able to detect high traffic on any interface.” (Subobject scope)

� “I want to detect several conditions on any interface.” (Instance scope)

� “I want to monitor each node on which a particular condition occurs.” (Node scope)

� “I want to be notified the first time that high traffic occurs on any interface.” (Enterprise scope)

Node 3 ifEntry.3

Node 3 ifEntry.4

Table 11-3. Triggers Fired by High-Traffic Poll (continued)

Node Subobject
Chapter 11, Using Alarms 231

Defining States
Defining States
When you first open the Alarm Definition window, the state-diagram drawing area contains one
state. This state is named Ground and is dark green (by default), indicating that the severity of the
state is “Normal.” This state is unique not only because every alarm must contain it, but because no
active alarm is ever in this state. The alarm manager instantiates an alarm when it receives a trigger
corresponding to a transition from Ground to some other state, and if an alarm instance transitions
back to Ground, that instance is deleted.

All of the other states that you want your alarm to track you must create yourself. For example, the
author of the predefined alarm IfLoad (interface load) created two nonground states: medium and
high.

Figure 11-4. IfLoad Alarm

The medium state is of Medium severity, and the high state is of High severity.

Note In the alarm in Figure 11-4, the author has renamed the Ground state “LowLoad.” The
Ground state can be renamed and its severity can be changed, but it cannot be deleted.

For instruction on creating new states, resizing state icons, and deleting states, see the following
sections:

� Defining a State on page 233

� Changing the Size of the State Icons on page 234

� Deleting a State on page 235
232 Designing and Managing Behavior Models

Defining States
Defining a State

When you add a new state to a state diagram, you must provide two pieces of information about the
state: its name and its severity. The name, of course, should indicate the role the state plays in the
state diagram. For instance, if a state will indicate that a device is down, you should name it
“DeviceDown,” or something similar. The alarm’s severity indicates whether the state represents a
fault condition or a traffic condition and how serious the problem is.

� To add a state to a state diagram:

1. Select the Add State button at the top of the Alarm Definition dialog.

The State Definition dialog appears.

2. Type the name of the state in the Name text field.

Note The maximum length for state names is 255 characters.

3. Select a severity from the Fault folder or the Traffic folder.

4. Select the OK button.

The new state appears in the diagram area. Drag the state icon to the spot you want it to occupy in
the diagram.

Note If you don’t move the newly create state, subsequently created states won’t be displayed.

If the state icon’s label won’t fit on the icon, you should resize the state icons in your diagram. For
information on how to resize these icons, see the section Changing the Size of the State Icons on
page 234.
Chapter 11, Using Alarms 233

Defining States
Changing the Size of the State Icons

The default size of state icons is fairly small. As a result, the name of a state may not fit on the
octagon that represents it. If you encounter this problem, you can change the size of the state icons
in your state diagram.

Note You can’t change the size of a single state icon. A resize operation affects all the state icons
in the current state diagram.

� To change the size of the state icons in a diagram:

1. Right-click one of the state icons in the diagram, and select Size from the pop-up menu that’s
displayed.

The State/Transition Size window appears.

The rectangle beneath the State Size label indicates the current size of the state icons.

2. Drag the handles on the State Size rectangle to change the width or height of the rectangle.

To accommodate state names that won’t fit on icons of the default size, make the rectangle
wider.

3. Select the OK button.

The width and height of the state icons in your diagram are resized to match the size of the
State Size rectangle.

Tip Your state diagram will look better if the names of your states are not too long.
234 Designing and Managing Behavior Models

Defining Transitions
Deleting a State

If you need to change the name or severity of a state, there’s no need to delete the state and create a
new one. You can double-click on the icon for the state to bring up the State Definition window and
change the state’s name or severity there. However, if you’ve created a state that you no longer
need, it’s a simple matter to delete it.

� To delete a state:

1. Select the state’s icon in your state diagram.

The Remove State button is enabled.

2. Select the Remove State button at the top of the Alarm Definition window.

A pop-up dialog asks you whether you’re sure you want to remove the state and explains that if
you remove a state you also remove all the transitions associated with that state.

3. Select the Yes button in the dialog.

The state icon is removed for the state diagram.

Note You can’t delete the Ground state.

Defining Transitions
Once you’ve created the states for an alarm, you must define the transitions between them. Each
transition has these components:

� A origin state.

� A destination state.

� A trigger. This is the trigger that will cause the transition.

� A list of actions that will be performed when the transition occurs. For a full description of
each action that can take place upon a transition, see Chapter 12, Alarm Actions

The sections below will lead you through the mechanics of creating a new transition in a state
diagram, changing the size of the transition icons in a state diagram, and deleting a transition:

� Defining a Transition on page 236

� Associating an Action with a Transition on page 237

� Changing the Size of Transition Icons on page 239

� Deleting a Transition on page 240
Chapter 11, Using Alarms 235

Defining Transitions
Defining a Transition

When you add a transition to a state diagram, you must supply three pieces of information: an
origin state, a trigger name, and a destination state. Both of the states must already have been
created in the state diagram, and the trigger must already exist as well.

� To create a new transition:

1. Select the Add Transition button at the top of the Alarm Definition window.

The Transition Definition dialog is displayed.

2. Select an origin state from the From drop-down list.

This list contains the names of all the states currently defined in the state diagram, including
Ground. If an alarm is in the origin state when the appropriate trigger arrives, it may transition
to the destination state.

3. Select a trigger from the Trigger drop-down list.

This list contains the names of all the triggers defined in the NerveCenter database. Only a
trigger with the name you specify here will be able to cause this transition.

4. Select a destination state from the To drop-down list.

5. Select the OK button.

A transition is drawn between the source and destination states. This transition consists of a line
connecting the source and destination states with arrows pointing in the direction of the destination
state, and a rectangular icon on the line labeled with the trigger name. You can drag the rectangular
icon, and the line will move with it.
236 Designing and Managing Behavior Models

Defining Transitions
Associating an Action with a Transition

A transition may or may not have alarm actions associated with it. If it has one or more actions
associated with it, these actions are performed each time the transition occurs.

You can add actions to an existing transition, or adding the actions can be part of the initial
definition of the transition.

� To add an action to a transition:

1. If you’re in the process of creating a new transition, the Transition Definition dialog should
already be open. If you want to add an action to an existing transition, double -click the
transition’s icon. The Transition Definition dialog appears.

2. Select the New Action button.

NerveCenter displays a pop-up menu that lists all the actions supported on your platform. The
complete list of actions is:

� Action Router

� Alarm Counter

� Beep

� Clear Trigger

� Command

� Delete Node

� EventLog

� Fire Trigger

� Inform

� Inform OpC
Chapter 11, Using Alarms 237

Defining Transitions
� Inform Platform

� Log to Database

� Log to File

� Microsoft Mail

� Notes

� Paging

� Perl Subroutine

� Send Trap

� Set Attribute

� SMTP Mail

� SNMP Set

These actions are described in Chapter 12, Alarm Actions.

3. Select an action from the pop-up menu.

If you select the Action Router, Delete Node, or Notes action, the action is added immediately
to the Actions list in the Transition Definition window. However, because most actions require
you to supply parameters, NerveCenter generally displays an action dialog at this point. The
dialog varies from action to action.

4. Fill in the fields in the action dialog.

This step is very dependent on the action you’ve selected. For details on how to complete this
step, see the appropriate section in Chapter 12, Alarm Actions

5. Repeat step 2 through step 4 for any additional actions you want to add to the transition.

6. Select the OK button in the Transition Definition window.
238 Designing and Managing Behavior Models

Defining Transitions
Changing the Size of Transition Icons

The default size of transition icons is fairly small. As a result, the name of a transition may well not
fit on the rectangle that represents the transition. If you encounter this problem, you can change the
size of the transition icons in your state diagram.

Note You can’t change the size of a single transition icon. A resize operation affects all the
transition icons in the current state diagram.

� To change the size of the transition icons in a diagram:

1. Right-click one of the transition icons in the diagram, and select Size from the pop-up menu
that is displayed.

The State/Transition Size dialog appears.

The rectangle beneath the Transition Size label indicates the current size of the transition icons.

2. Drag the handles on the Transition Size rectangle to change the width or height of the
rectangle.

3. Select the OK button.

The width and height of the transition icons in your diagram are resized to match the size of the
Transition Size rectangle.

Tip Your state diagram will look better if the names of your transitions (triggers) are not too
long.
Chapter 11, Using Alarms 239

Documenting an Alarm
Deleting a Transition

This section explains how to delete a transition from an existing state diagram or one that you’re
currently drawing.

� To delete a transition:

1. Select the transition you want to delete.

2. Select the Remove Transition button from the Alarm Definition window.

A dialog appears that asks if you’re sure you want to delete the transition.

3. Select the Yes button in the dialog.

The transition is deleted from your state diagram.

Bear in mind that an alarm’s definition does not actually change until you save the alarm.

Documenting an Alarm
This section explains how to add documentation (notes) to an alarm and what should be covered in
that documentation.

How to Create Notes for an Alarm

You can add notes to an alarm by following the procedure outlined in this subsection.

� To add notes to an alarm:

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

Figure 11-5. Alarm Definition List Window
240 Designing and Managing Behavior Models

Documenting an Alarm
2. Select an alarm to which you want to add a note.

3. Make sure that your alarm is not enabled.

4. Select the Open button.

The Alarm Definition window is displayed.

5. In the Alarm Definition window, select the Notes button.
Chapter 11, Using Alarms 241

Documenting an Alarm
The Alarm Notes and Associations dialog is displayed.

6. Enter your documentation for the alarm by typing in this dialog. See the section What to
Include in Notes for an Alarm on page 242 for information on what type of information you
should enter here.

7. Select the OK button at the bottom of the Alarm Notes and Associations dialog.

The Alarm Notes and Associations dialog is dismissed.

8. Select the Save button in the Alarm Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who opens
the definition for your alarm and selects the Notes button.

What to Include in Notes for an Alarm

We recommend that you include the following information in the notes for your alarm:

� Purpose of the alarm

� Brief description of the alarm’s states

� Brief description of the alarm’s transitions

� List of the objects (polls, masks, and alarms) that fire triggers that affect this alarm
242 Designing and Managing Behavior Models

Documenting an Alarm
� Description of the actions specified for transitions, especially Fire Trigger and Perl Subroutine
actions

� Documentation for any program or script called from a Command action

� Names of any reports run against data logged by the alarm

� Information about other alarms that are part of the same behavior model

For example, let’s consider the alarm definition shown in Figure 11-6.

Figure 11-6. IfData_LogToFile Alarm

The notes for this alarm should look something like this:

Purpose: Logs interface data to the log file ifdata.log.
States: Ground (Normal), Logging (Normal)
Transitions: ifData (Ground to Logging), ifData (Logging to Logging)
Associated poll: IfData fires the ifData trigger if it is able to
retrieve information about an interface from a node’s interface table.
Actions: ifData (Ground to Logging) - Log to File ifdata.log Enabled
Verbose
ifData (Logging to Logging) - Log to File ifdata.log Enabled Verbose
Chapter 11, Using Alarms 243

Enabling an Alarm
Enabling an Alarm
For a alarm to become functional, several conditions must be met:

� The alarm must be enabled.

� The alarm must receive a trigger that corresponds to one of the alarm’s transitions out of the
Ground state.

� The alarm’s property must be in the property group of the node associated with the trigger.

This section explains how to enable an alarm.

Note If you later turn an alarm off or reset the alarm to ground, any pending triggers fired by that
alarm are cleared if the Clear Triggers for Reset To Ground or Off checkbox is checked
in the alarm’s definition window.

� To enable an alarm:

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

2. Select the alarm you want to enable from the list.

The Open button becomes enabled.

3. Select the Open button.
244 Designing and Managing Behavior Models

Enabling an Alarm
The Alarm Definition window is displayed and shows the definition of the alarm you selected.

4. Select the On radio button in the Enabled frame.

5. Select the Save button.

The alarm is now enabled.

Tip You can also enable an alarm by selecting the alarm in the Alarm Definition List window,
right-clicking the entry for the alarm, and choosing On from the popup menu.
Chapter 11, Using Alarms 245

Correlation Expressions
Correlation Expressions
NerveCenter 3.8 provides an additional method for Alarm Definition creation, the Correlation
Expression window. Correlation expressions allow the definition of alarm diagrams based on
Boolean expressions. The correlation expressions do not apply in every situation, but in cases
where multiple combinations of events need to be detected and acted upon, the correlation
expressions save tremendous amounts of time, both in alarm diagram designing and building.

To build a correlation expression, first create the necessary trap masks and poll conditions to fire
the desired triggers. Once the triggers have been created, the Correlation Expression Editor can be
used to create the expression.

There are three main components of the correlation expression. First, the Boolean expression is
created using and, or, parenthesis and triggers that are already existent. Second, the correlation reset
period determines the time limit in which the entire expression must become true once a portion has
been detected. Third, the correlation action must be specified, directing NerveCenter to act when
the expression becomes true.

For example take the sample alarm in Figure 11-7.

Figure 11-7. Sample Alarm: Error Rate Alarm Created with the Alarm Definition Window

In this alarm, you want an inform to be sent if you receive HighErrorRate and HighLoad triggers or
if you receive a HighErrorPersists trigger. The alarm will reset to Ground if the alarm is not
completed within the time period specified by the transition Reset. Creating this model takes
several steps. You need to create three states and eight transitions. Three of those transitions require
you to add the same action, send inform. The idea behind this model, however, can be expressed
simply with a boolean expression:

If (HighLoad AND HighErrorRate) OR HighErrPersists, then Inform NC/NV/OV

Correlation expressions allow you to create simple alarms quickly.

Note After a correlation expression reaches the final state, the Alarm reverts to Ground.
246 Designing and Managing Behavior Models

Correlation Expressions
� To create a Correlation Expression:

1. From the client’s Admin menu, choose Correlation Expression List.

The Correlation Expression List Window opens.

2. Select the New button.

The Edit Correlation Expression window opens.

3. In the Expression Name field enter a name for the expression.

Note The maximum length for correlation names is 255 characters.
Chapter 11, Using Alarms 247

Correlation Expressions
4. Enter the Reset Period (must be greater than 0) and select a time unit (seconds, minutes or
hours) from the drop-down menu.

The correlation reset period is the time in which the entire alarm must complete before the
alarm resets. This counter starts when the first trigger occurs. The counter does not restart
when a second trigger occurs.

The time period must be greater than zero. You can choose between seconds, minutes or hours.

5. Enter a correlation expression.

You enter information in the Correlation Expression field by using the buttons below the field.

� To add a trigger:

a. Select a trigger from the Trigger to Add drop down list.

b. Select Add Trigger.

� To add a boolean operator, select the AND or OR button.

Note The AND operator has precedence over the OR operator. For example, x or y and z is
the same as x or (y and z).

� To add a parenthesis, select the (or) button.

The close parenthesis) button is not active until there is an open parenthesis (in the
correlation expression.

� To delete the previous element of the correlation expression, select the Del button.

6. Add Correlation Actions.

a. Select the New Action button.

NerveCenter displays a pop-up menu that lists all the actions supported on your platform.
The complete list of actions is:

� Action Router

� Alarm Counter

� Beep

� Clear Trigger

� Command

� Delete Node

� EventLog

� Fire Trigger
248 Designing and Managing Behavior Models

Correlation Expressions
� Inform

� Inform OpC

� Inform Platform

� Log to Database

� Log to File

� Microsoft Mail

� Notes

� Paging

� Perl Subroutine

� Send Trap

� Set Attribute

� SMTP Mail

� SNMP Set

These actions are described in Chapter 12, Alarm Actions.

b. Select an action from the pop-up menu.

If you select the Action Router, Delete Node, or Notes action, the action is added
immediately to the Actions list in the Edit Correlation Expression window. However,
because most actions require you to supply parameters, NerveCenter generally displays an
action dialog at this point. The dialog varies from action to action.

c. Fill in the fields in the action dialog.

This step is dependent on the action you’ve selected. For details on how to complete this
step, see the appropriate section in Chapter 12, Alarm Actions.

You can edit these selections later by selecting the Update Action button.

d. Repeat step a through step c for any additional actions you want to add to the correlation
expression.

To delete an action, select it from the Correlation Actions list and click Delete Action.

7. Select Save.
Chapter 11, Using Alarms 249

Correlation Expressions
Note The Save and Create Alarm buttons are not enabled until:
� you give the correlation expression a name
� you set the Reset Period to a number other than zero
� the correlation expression is valid (for example, all open parenthesis are closed)
� you select at least one Correlation Action

This saves the correlation expression.

After creating a correlation expression, you can use it as a building block to create alarms.

Note You do not have to save a correlation expression to create an Alarm. As long as the
correlation expression has a name, a reset period, a valid expression and an action, you can
create an Alarm from the expression.

� To copy a correlation expression:

1. From the client’s Admin menu, choose Correlation Expression List.

The Correlation Expression List Window opens.

2. Select a correlation expression and right-click.

3. Select Copy from the pop-up menu.

The Edit Correlation Expression window opens.

4. In the Expression Name field enter a new name for the expression.

Note The maximum length for correlation names is 255 characters.

5. Select Save.
250 Designing and Managing Behavior Models

Correlation Expressions
� To create an alarm from a correlation expression:

1. From the Edit Correlation Expression window, click Create Alarm.

The Create Alarm using Correlation Expression window opens.

2. In the Alarm Name field, enter a name for the alarm.

Note The maximum length for alarm names is 255 characters.

3. Select a property from the Property list box. Or leave the Property set to NO_PROP.

The property you choose helps determine whether a particular trigger can cause an alarm
instance to be instantiated or cause a transition in an existing alarm instance. Generally, the
alarm’s property must match one of the properties in the property group of the node associated
with the trigger. The property NO_PROP matches any property.

For complete information regarding the matching rules that determine whether a trigger causes
an alarm transition, see Designing and Managing Behavior Models.

4. Select a scope from the Scope list box.

The options are Enterprise, Instance, Node, and Subobject. Briefly, an alarm instance with
Enterprise scope monitors all the nodes managed by the NerveCenter server. An alarm instance
with Node scope monitors a single node. A subobject scope alarm monitors a subcomponent of
a node, usually an interface (subobject). Instance scope lets you monitor different base objects
in a single alarm instance.

For further information on alarm scope, see Designing and Managing Behavior Models.

5. Select the Clear Triggers for Reset To Ground or Off checkbox if you want NerveCenter to
clear any pending triggers fired by this alarm when the alarm is turned off or manually reset to
ground. The alarm might have pending triggers if you associated a Fire Trigger alarm action
with this alarm.
Chapter 11, Using Alarms 251

Correlation Expressions
6. If you want to enable you alarm now, set the alarm’s Enabled status to On.

7. Select Save Alarm.

When you save the alarm, you can now access it through the Alarm Definition List and edit it as
any other alarm. For details on using the Alarm Definition window, see Defining Transitions on
page 235.

Figure 11-8 shows the correlation expression that creates the alarm shown in Figure 11-7 on
page 246. Figure 11-9 shows the alarm generated with the Error Rate correlation expression.

Figure 11-8. Error Rate Correlation Expression
252 Designing and Managing Behavior Models

Correlation Expressions
Figure 11-9. Error Rate Alarm Generated from the Error Rate Correlation Expression

� To add Notes to a Correlation Expression:

1. From the Correlation Expression window, select Notes.

The Correlation Expression Notes dialog box displays.

2. Enter your comments.

3. Select Save to close the Notes dialog box.

A dialog box asking Are you sure? displays.

4. Select Yes.

5. Click Save in the Correlation Expression window to save the notes.

Note These notes document the correlation expression. They are not copied over to any alarm
created by a correlation expression.
Chapter 11, Using Alarms 253

Correlation Expressions
254 Designing and Managing Behavior Models

12
Alarm Actions
When you create an alarm, you can specify that one or more alarm actions take place on any alarm
transition. These actions fall into two categories: those that affect how the alarm works and those
that perform some type of corrective action. An example of the first type of action is the Fire
Trigger action. This action (as its name implies) fires a trigger that can cause a transition in its own
or another alarm. An example of the second type of action is the Command action, which enables
you to run any script or executable when a transition occurs.

Note NerveCenter alarm actions are asynchronous. Alarm actions do not execute in the order that
you specify them—actions can fire in any order. Therefore, action2 should not be dependant
on action1, for example.

The only exception is the Clear Trigger action; when you include a Clear Trigger action with
other alarm actions, the Clear Trigger action is always performed first. This prevents the
possibility of a trigger being fired and then cleared during the same transition.

The remainder of this chapter discusses how to use each of the NerveCenter alarm actions:

Section Description

Action Router on page 257 Explains how to send information about an alarm transition to the Action
Router facility. The Action Router enables you to performs actions if
certain conditions are met.

Alarm Counter on page 258 Explains how to count the number of times that a particular transition has
occurred.

Beep on page 262 Explains how to send audible alarm to the workstation at which the
NerveCenter Client is running.

Clear Trigger on page 263 Explains how to clear a trigger that was fired on a delayed basis.

Command on page 264 Explains how to execute a program or script from an alarm action.

Delete Node on page 266 Explains how to delete the node being monitored by an alarm instance.

EventLog on page 266 Explains how to log information about an alarm transition to a system log
file (UNIX) or the Event Log (Windows).

Fire Trigger on page 269 Explains how to fire a trigger as an alarm action.
255

Inform on page 273 Explains how to send the equivalent of an SNMP trap to OpenView
Network Node Manager or another NerveCenter when a significant
network event is detected.

Inform OpC on page 276 Explains how to send a message to HP OpenView IT/Operations.

Inform Platform on page 277 Explains how to send an event to the following network management
platforms: MicroMuse Netcool/OMNIbus, IBM Tivoli Enterprise
Console, or Computer Associates Unicenter TNG.

Log to Database on page 280 Explains how to log information about an alarm transition to the
NerveCenter database.

Log to File on page 281 Explains how to log information about an alarm transition to a file.

Microsoft Mail on page 282 Explains how to send e-mail to a client of a Microsoft Exchange server.

Notes on page 283 Explains how to display the notes (documentation) for an alarm.

Paging on page 285 Explains how to send a page as an alarm action.

Perl Subroutine on page 286 Explains how to execute a Perl script as an alarm action. Perl scripts are
different from other scripts in that they have access to a great deal of
internal NerveCenter information.

Send Trap on page 296 Explains how to send an SNMP trap as an alarm action.

Set Attribute on page 300 Explains how to set an attribute of an alarm, a mask, a node, or a poll as an
alarm action.

SMTP Mail on page 302 Explains how to send SMTP mail.

SNMP Set on page 303 Explains how to send an SNMP SetRequest to set the value of an attribute
in an agent’s MIB.

Section Description
256 Designing and Managing Behavior Models

Action Router
Action Router
Normally, when an alarm transition occurs, the actions associated with that transition are performed
automatically. However, it’s possible to specify that one or more actions be performed
conditionally. To define this type of behavior, you must:

� Add the Action Router action to the appropriate alarm transition. (This section explains how to
perform this task.)

� Use the Action Router’s rule composer to define the conditions under which you want the
Action Router to perform one or more actions and the actions to be taken under those
conditions. These conditions can be specified using any Perl expression that evaluates to true
or false. However, NerveCenter provides a large set of variables for use in these conditions.
These variables enable you to set up conditions based (among other things) on:

� The name of the alarm that underwent the transition

� The day of the week

� The name of the node being monitored

� The property group associated with the node being monitored

� The severity of the transition’s destination state

� The time of day

� The name of the trigger that caused the transition

In addition, the actions that can be associated with a set of conditions can be selected from
almost all the actions that can be performed during an alarm transition. For complete
information about using the rule composer, see “<Z_Hyperlink>Performing Actions
Conditionally (Action Router).”

Once you’ve done this setup, when the transition with the Action Router action takes place, the
Action Router process will receive information about the transition. The Action Router will then
evaluate all of its rules to determine any of them are satisfied. If a rule is satisfied, the Action
Router performs all of the actions associated with that rule. For example, if you’ve set up a rule that
tells the Action Router to page an administrator if a transition’s destination state is of Critical
severity, the Action Router will check the transition’s destination state and page an administrator if
that state is Critical.

� To add the Action Router action to an alarm transition:

1. In the Transition Definition window, select the New Action button.

A pop-up menu listing all actions is displayed.

2. Select Action Router from the pop-up menu.

The new action appears in the Actions list in the Transition definition window.
Chapter 12, Alarm Actions 257

Alarm Counter
3. Select the OK button in the Transition Definition window.

4. Select Save in the Alarm Definition window.

Alarm Counter
Suppose that you want to write an alarm to detect more than five authentication-failure traps from a
node within five minutes. A possible state diagram for this problem is shown in Figure 12-1.

Figure 12-1. First Solution to Authentication-Failure Problem
258 Designing and Managing Behavior Models

Alarm Counter
Presumably, the trigger authFail is fired by a trap mask that detects generic authentication-failure
traps. Also, on the transition from Ground to Alert1, the trigger authClear is fired on a five minute
delay. This trigger is cleared on the transition from Alert5 to Intrusion.

With seven states, this diagram doesn’t look too bad. But what if you had been asked to write an
alarm that detected more than twenty authentication failures? Clearly, a better approach is needed.

The NerveCenter feature that you can use to simplify this type of state diagram is the Alarm
Counter alarm action. This action enables you to loop in an alert state until you’re ready to move to
the Intrusion state. Thus, a revised state diagram might look like Figure 12-2:

Figure 12-2. Solution Using the Alarm Counter Action

The firing and clearing of the authClear trigger are handled as they were in the previous example.
The new actions in this state diagram are Alarm Counter actions on both the transition from Alert to
Alert and the transition from Alert to Ground.

The Alarm Counter action associated with the circular transition from Alert to Alert:

� Creates a counter variable if it does not already exist.

� Increments the counter. (The initial value of the counter is zero.)

� Checks to see whether the value of the counter is 5. (The test is for 5 instead of 6 because one
authorization failure has to occur for the alarm to reach the Alert state.)

� Fires the trigger intrusion if the value of the counter is greater than 4.

The Alarm Counter action associated with the transition from Alert to Ground:

� Creates the counter if it does not already exist.

� Sets the value of the counter to 0.

This example shows both of the main uses of the Alarm Counter action: to set up a loop in which a
trigger is fired when the counter reaches a certain value and to set or reset the value of the counter.
Chapter 12, Alarm Actions 259

Alarm Counter
Note You can use the Counter() Function in a Perl subroutine or Action Router rule to get the
value of a counter associated with a particular transition. For more information, see
Counter() Function on page 291.
You can also use the NC::AlarmCounters Perl object in Perl subroutines. However, the
NC::AlarmCounters object is completely seperate from the Counter() function and does not
share data with the Counter () function. For more details about the NC::AlarmCounters, see
the Release Notes.

� To create an alarm counter:

1. In the Transition Definition window, select the New Action button.

A pop-up menu of actions is displayed.

2. Select Alarm Counter from the pop-up menu.

The Alarm Counter Action dialog is displayed.

3. Type a counter name in the Counter Name text field, or select a counter name from the
Counter Name drop-down list.

The drop-down list will contain values only if another transition in the same alarm has already
defined an alarm counter.

The scope of the alarm counter name is the alarm instance in which the counter is created.

4. To set up a loop—that is, you want to fire a trigger after a transition has occurred a certain
number of times—perform these steps:
260 Designing and Managing Behavior Models

Alarm Counter
a. Select either the Increment or Decrement radio button.

Obviously, this choice determines whether the counter will be incremented or
decremented when the Alarm Counter action is performed. Normally, you increment a
counter because the counter is initialized to 0. However, it is possible to set the counter to
a nonzero value in one Alarm Counter action and then to decrement it in another.

The counter is incremented or decremented before it is used in any comparison.

b. Type an integer in the when counter equals field.

The Alarm Counter action can fire a trigger when the counter equals this value.

c. Type the name of a new trigger in the Fire Trigger field, or select an existing trigger from
the Fire Trigger drop-down list.

If you do not enter a trigger name, any value you enter in the “when counter equals” field
is lost when you save the alarm.

5. To set or reset the value of a counter, perform these steps:

a. Check the Set Counter checkbox.

b. Enter an integer in the Value field.

The counter will be set to this value when the Alarm Counter action occurs.

6. Select the OK button in the Alarm Counter Action dialog.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.
Chapter 12, Alarm Actions 261

Beep
Beep
If you add the Beep alarm action to a transition, NerveCenter sends an audible alarm to all of the
clients connected to the server when that transition occurs. This is one method of notifying network
administrators of a condition that requires their attention.

� To add a Beep alarm action to a transition:

1. In the Transition Definition window, select the New Action button.

A pop-up menu is displayed that lists all alarm actions.

2. Select Beep from the pop-up menu.

The Beep Action dialog is displayed.

3. Type a value in the Frequency field, or leave the default value of 300.

This value specifies the beep’s frequency in hertz.

4. Type a value in the Duration field, or leave the default value of 50.

This value specifies the beep’s duration in milliseconds.

5. Select the OK button in the Beep Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.
262 Designing and Managing Behavior Models

Clear Trigger
Clear Trigger
When you define a Fire Trigger alarm action, you can use a delay to determine when the trigger
actually fires. (For details about the Fire Trigger action, see the section Fire Trigger on page 269.)
After a Fire Trigger action has been initiated, but before the delay has elapsed, you can cancel the
firing of the trigger using the Clear Trigger action. A Clear Trigger action cancels any pending
triggers of a specified name that have been queued by its own alarm instance.

When you include a Clear Trigger action with other alarm actions, the Clear Trigger action is
always performed first. This prevents the possibility of a trigger being fired and then cleared during
the same transition.

A good example of the use of Fire Trigger and Clear Trigger is the predefined alarm
IfLinkUpDown.

Figure 12-3. IfLinkUpDown Alarm

This alarm is designed to transition from Ground to Down Trap upon the receipt of a linkDown
trigger. When this transition occurs, a Fire Trigger action fires the trigger linkTimer on a
three-minute delay. If a linkUp trap arrives within three minutes, the linkUp transition occurs, and a
Clear Trigger action clears the linkTimer trigger. Otherwise, the linkTimer trigger is fired, and the
alarm transitions to the LinkDown state.

� To add a Clear Trigger action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select the Clear Trigger action.
Chapter 12, Alarm Actions 263

Command
The Clear Trigger Action dialog is displayed.

3. Type the name of the trigger you want to clear in the Trigger Name field, or select it from the
Trigger Name drop-down list.

Pending triggers of this name will be cleared only in the alarm instance that invokes the Clear
Trigger action.

4. Select the OK button in the Clear Trigger Action dialog.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm definition window.

Command
The Command alarm action enables you to execute any command or script when a particular alarm
transition occurs. An example of an alarm that uses this action is the predefined alarm IPSweep.

Figure 12-4. IPSweep Alarm

When the IPSweep transition occurs, this alarm executes a program called ipsweep. This is the
program that actually discovers the devices on the subnets you’re managing.

� To add a Command action to a transition:

1. In the Transition Definition window, select the New Action button.

A pop-up menu of the available actions is displayed.
264 Designing and Managing Behavior Models

Command
2. Select Command from the pop-up menu.

The Command Action dialog is displayed.

3. Type the command to be executed in the Command field.

On Windows systems, the command can be any .exe, .bat, or .cmd file you can invoke from the
command line. You can omit the command suffix because the operating system will locate the
appropriate file. On UNIX systems, the command can be any executable binary or script file
that you can invoke from a shell.

4. Enter any parameters that the command requires after the command.

Note The command plus its parameters can be up to 2020 characters in length. If you exceed this
length, the error “Command line too long” is written to the event or system log.

If the parameters are constants, you can simply type them in the Command field following the
command name. However, if they will vary from alarm instance to alarm instance (and
NerveCenter maintains the information you need in one of its variables), you can use the
Special Symbol drop-down list and the button beside it to enter the parameters. For more
information, see NerveCenter Variables on page 293.

To enter a variable in your command:

a. Place your cursor at the appropriate spot in the Command field.

b. Select a variable from the Special Symbol drop-down list.

c. Select the button to the right of the Special Symbol field.

5. Select the OK button in the Command Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.
Chapter 12, Alarm Actions 265

Delete Node
Delete Node
The Delete Node action deletes the node being monitored by the current alarm instance from the
NerveCenter database.

An example of using Delete Node might be to remove a node from the NerveCenter database that
does not respond to a ping for five minutes after an alarm transitions to a down state.

� To add a Delete Node action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Delete Node from the pop-up menu.

The Delete Node action is added to the Actions list in the Transition Definition window.

3. Select the OK button in the Transition Definition window.

4. Select the Save button in the Alarm Definition window.

EventLog
The EventLog alarm action writes information about an alarm transition to the Windows
Application event log or a UNIX system log file. On Solaris the system log file is
/var/adm/messages, and on HP-UX it is /var/adm/syslog/syslog.log.

� To add an EventLog action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all the alarm actions is displayed.

2. Select EventLog from the pop-up menu.

The Event Log Action dialog is displayed.

This dialog provides default values for the three standard event log parameters—Source, Type,
and Event—and allows you to change them.
266 Designing and Managing Behavior Models

EventLog
Note If you’re working in a UNIX environment, you can skip to step 6 because UNIX does not
use these parameters.

3. Leave the default value in the Source text field, or type in a new registered source.

In the Windows environment, use the default value (NerveCenter) for the Source unless you
are familiar with the intricacies of the event log and have created another registered source.
The source is the program generating the log entry.

4. Select one of the standard event log types from the Type drop-down list.

Select the most appropriate option for the situation your alarm transition detects. The options
are Error, Warning, Informational, Audit Success, and Audit Failed.

5. Leave the default event ID in the Event field, or type a new one.

Under Windows, use the default value (3221356553) in the Event field unless you’re familiar
with the inner workings of the event log, have changed your Source value from the default, and
have defined an associated ID. The event log uses this event ID to find the text message format
for the log entry.

6. Select the OK button in the Event Log Action dialog.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

A sample event log entry is shown in Figure 12-5.
Chapter 12, Alarm Actions 267

EventLog
Figure 12-5. Event Detail

Table 12-1 lists the fields in a NerveCenter log entry or mail message and discusses the value of
each field.

Table 12-1. Fields in Log Entry or Mail Message

Field Contains

Time Date and time the record was logged. The format of the time is
mm/dd/yyyy hh:mm:ss day (for example, 10/29/1997 14:32:22 Sat).

LogID Identification number of the log entry. NerveCenter assigns a sequential
number to each log entry.

Severity The severity of the transition’s destination state.

PropertyGroup Property group of the node that caused the alarm to change states.

Node Name of the node that caused the alarm to change states.

Alarm Name of the alarm.

Ostate Name of the state from which the alarm moves when the logged transition
occurs.

Trigger Name of the trigger that causes the alarm to move from the Ostate to the
Nstate.

Nstate State of the alarm after the logged transition occurs.

TrapTime The contents of a trap’s timestamp field. Used only when the transition
was caused by a trap-mask trigger.
268 Designing and Managing Behavior Models

Fire Trigger
Fire Trigger
In NerveCenter, you have several ways of generating a trigger. For instance, you can use a poll, a
mask, or the FireTrigger() function to fire the trigger. You can also use the Fire Trigger alarm action
to produce a trigger. This action is useful when you need one alarm to send a trigger to itself or to
another alarm.

Here are some examples of when you might need to use the Fire Trigger alarm action:

� You want an alarm transition to fire a trigger on a delayed basis so that your alarm will know
when a certain amount of time has passed.

This strategy is used in the predefined alarm IfLinkUpDown, shown in Figure 12-6.

Figure 12-6. IfLinkUpDown Alarm

On the linkDown transition, this alarm fires the linkTimer trigger on a three-minute delay. If a
linkUp trigger does not cause a transition to Ground within three minutes, the linkTimer trigger
is fired, and the alarm transitions to the LinkDown state.

Using the action for its timing capabilities is the most common use of the Fire Trigger action.

GenericTrapNumber The contents of a trap’s generic-trap field. Used only when the transition
was caused by a trap-mask trigger.

Enterprise The contents of a trap’s enterprise field. Used only when the transition
was caused by a trap-mask trigger.

SpecificTrapNumber The contents of a trap’s specific-trap field. Used only when the transition
was caused by a trap-mask trigger.

Instance The specific base object instance for which the transition occurred.

Object The base object associated with the transition.

Attribute ... The variable bindings of the trigger that caused the transition. Each
variable binding is printed in the format Attribute attribute=value.

Table 12-1. Fields in Log Entry or Mail Message (continued)

Field Contains
Chapter 12, Alarm Actions 269

Fire Trigger
� You want to send information to an alarm instance about an event that is outside its scope.

As an example, let’s look at the predefined alarm BetterNode, which tracks the status of a node
on a different subnet from the NerveCenter server.

Figure 12-7. BetterNode Alarm

If NerveCenter is unable to ping a node, the node’s alarm instance transitions to the IcmpFail
state. What happens next, however, depends on a trigger fired by an alarm instance monitoring
the router that sits between the NerveCenter server and the node being monitored with
BetterNode. If the alarm instance monitoring the router generates the routerUp trigger, the
BetterNode alarm transitions to the critical NoResponse state, but if the router’s alarm
generates the routerDown trigger, the BetterNode alarm transitions to the normal RouterDown
state.

� A behavior model requires alarms of different scopes to detect a condition.

For example, suppose you want to create a behavior model that detects high interface traffic at
the node level. You’ll need to create a subobject scope alarm that detects high traffic on a
single interface and fires a trigger that notifies a node scope alarm that the interface is busy.
You’ll also need a node scope alarm that tracks the triggers being fired by the subobject scope
alarms. Behavior models of this type are called multi-alarm behavior models.

Note If you later turn an alarm off or reset the alarm to ground, any pending triggers fired by that
alarm are cleared if the Clear Triggers for Reset To Ground or Off checkbox is checked
in the alarm’s definition window.
270 Designing and Managing Behavior Models

Fire Trigger
� To add a Fire Trigger action to an alarm transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Fire Trigger from the pop-up menu.

The Fire Trigger Action dialog is displayed.

3. In the Trigger Name field, specify the name of the trigger to be fired when the transition
occurs.

You can either type in the name of a new or existing trigger or select the name of an existing
trigger from the Trigger Name drop-down list.

4. Either leave the default values in the SubObject, Node, and Property fields, or enter new
values using the keyboard or the associated drop-down lists.

If you want your Fire Trigger action to simply provide a timer for its own alarm instance, the
default values are fine. The defaults ensure that the resulting trigger affects only alarm
instances concerning the same node and subobject as the current alarm instance.

If the trigger being fired will affect instances of a different alarm, you may need to change the
default values. The steps below explain the values you can provide for these attributes.

a. To change the value in the SubObject field, either type in a new value or select a value
from the SubObject drop-down list.

Note When choosing a SubObject value, keep in mind that alarm instances with subobject scope
must reference the same subobject in order to be transitioned by this trigger. For transitions
with instance scope, only the instances must match; the base objects can be different. Any
alarm instances with a node or enterprise scope will ignore the value in the SubObject field.
Chapter 12, Alarm Actions 271

Fire Trigger
Table 12-2 lists the acceptable values for the SubObject field.

b. To change the value of the Node field, either type in a new value or select a value from the
Node drop-down list.

Table 12-3 lists the acceptable values for the Node field.

Table 12-2. Values for the SubObject Field

Value Explanation

$SO The trigger inherits the originating alarm’s subobject. This is the default.

$ANY The trigger is assigned a subobject that matches any destination alarm
subobject. Think of this as a subobject wildcard.

$ON.$OI If the originating alarm has a subobject that consists of a base object plus an
instance joined by a period, the trigger inherits the originating alarm’s
subobject (same as $SO). However, if the originating alarm does not have
this type of subobject, the trigger’s subobject is null (see $NULL below).

$ON If the originating alarm has a subobject that consists of a base object plus an
instance joined by a period, the trigger inherits the base object portion of the
alarm’s subobject and appends to this base object a period and a wildcard
for the instance. The resulting trigger can drive alarm instances with a
subobject containing a matching base object and any instance. For example,
let’s say that an alarm instance with the subobject ifEntry.3 fires a trigger
using $ON. The trigger’s subobject will be ifEntry.*, and the trigger will
affect alarm instances with subobjects such as ifEntry.1, ifEntry.2, and so
on. If the originating alarm instance does not have a subobject that consists
of a base object plus an instance, $ON is equivalent to $NULL.

$NULL The trigger is assigned a null subobject. The only subobject scope alarm that
can be affected by such a trigger is one that has a null subobject itself.

baseObject.instance You can type the subobject. The trigger’s subobject is set to the subobject
you specify, for example, ifEntry.3 or system.0.

anyString This feature enables you to take advantage of the matching rules for triggers
and alarm transitions by making creative use of the subobject attributes of
these objects. For example, you could use the name of an application as the
subobject in order to correlate all events relating to that application.

Table 12-3. Values for the Node Field

Value Explanation

$NODE The trigger inherits the originating alarm instance’s node. This is the
default.

$ANY The trigger is assigned a node that matches any destination alarm instance
node. Think of this as a node wildcard.

nodeName You assign the name of any managed node to this attribute. Use the Node
drop-down list to prevent spelling errors.
272 Designing and Managing Behavior Models

Inform
c. To change the value of the Property field, either type in a new value or select a value from
the Property drop-down list.

Table 12-4 lists the acceptable values for the Property field.

When a trigger contains a property, the property group of the node found in a destination
alarm instance’s node data member must contain the trigger’s property. Otherwise, no
alarm transition will occur.

5. Select a delay for the trigger by entering a positive integer in the Delay text field and selecting
the appropriate radio button: Days, Hours, Minutes, or Seconds.

6. Select the OK button in the Fire Trigger Action dialog.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

Inform
Once NerveCenter has used its event-correlation abilities to detect a problem, it can notify a
network management platform or another NerveCenter server of the problem using the Inform
action. This alarm action enables you to notify OpenView Network Node Manager or another
NerveCenter when a significant network event is detected.

Note For information about sending messages to Hewlett Packard OpenView IT/Operations, see
the section Inform OpC on page 276.

For information about sending messages to: MicroMuse Netcool/OMNIbus, IBM Tivoli
Enterprise Console, or CA Unicenter TNG, see the section Inform Platform on page 277.

(For information about integrating NerveCenter with OpenView, see the Integrating NerveCenter
with a Network Management Platform online guide.)

Table 12-4. Values for the Property Field

Value Explanation

$PROPERTY The trigger inherits the originating alarm instance’s property. This is the
default.

$NO_PROP The trigger is assigned no property. In this case, NerveCenter ignores the
trigger’s property attribute when determining which alarm transitons the
trigger can affect.

property The trigger is assigned the property you type in or select from the Property
drop-down list.
Chapter 12, Alarm Actions 273

Inform
Inform sends the equivalent of an SNMP trap to its recipients, and the specific trap number in the
trap indicates the nature of the problem. The recipients of the trap must be set up to interpret this
trap properly and to take appropriate action. For example, when OpenView Network Node
Manager receives an Inform message from NerveCenter, it usually displays a customized message
in its event browser.

Note Although the message that the Inform action sends to its recipients contains the same
information as a trap, the message is not sent via UDP. Because the delivery mechanism
must be reliable, the message is sent via TCP.

Typically, a behavior model uses the Inform alarm action on a transition to some terminal state. For
example, consider the predefined alarm SnmpStatus, shown in Figure 12-8.

Figure 12-8. SnmpStatus Alarm

Only one transition in this alarm contains an Inform action. That is the transition SS_ICMP_Failed,
which leads to the DeviceDown state.

An alarm does not specify who is to receive Inform messages. The recipients of these messages are
set up in the NerveCenter Administrator by the person who configures NerveCenter.

If the destination is a network management platform, such as OpenView Network Node Manager,
you must create a new event message for the platform that will be posted when OpenView receives
your Inform message. If the destination is another NerveCenter server, you must create a trap mask
in the destination NerveCenter to capture the Inform message. (For information on how to create
such a trap mask, see the section Creating a Trap Mask on page 205.)
274 Designing and Managing Behavior Models

Inform
� To add an Inform action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Inform from the pop-up menu.

The Inform Action dialog is displayed.

3. Type a number in the range 100000 to 199999 in the Specific Number text field, or leave this
field blank.

For more information about the specific number field, see Inform Specific Numbers on
page 279.

4. Select the OK button in the Inform Action dialog.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

As mentioned earlier, each Inform message looks like an SNMP trap. Thus, it contains a great deal
of information other than a specific-trap number that you can display in an OpenView event
message or use in a NerveCenter trap mask. This information is listed below:

� A timestamp.

� A generic trap number. This number will always be 6.

� An enterprise. The enterprise OID will always be 1.3.6.1.4.1.78.

� A list of variable bindings. For a list of these variable bindings, see the section Variable
Bindings for NerveCenter Informs on page 207.
Chapter 12, Alarm Actions 275

Inform OpC
Inform OpC
The Inform OpC alarm action enables you to send a message to Hewlett Packard’s OpenView
IT/Operations (IT/O). IT/O treats this message just as if it had come from an IT/O agent running on
a node managed by IT/O.

Although you can use this action to send a message to IT/O at any time, the action is designed to be
used in the following scenario:

1. IT/O messages are diverted to NerveCenter.

2. NerveCenter correlates the conditions described in the IT/O messages.

3. NerveCenter sends messages to IT/O describing the results of its correlation activities.

� To add an Inform OpC action to an alarm transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Inform OpC from the pop-up menu.

The Inform OpC Action dialog is displayed.

3. Specify the contents of the message by entering values in the Node, Application, Group,
Type, Object, Severity, and Message text fields.

In the Node field, you can use the variable $NodeName, which contains the name of the node
associated with the trigger that caused the alarm transition. Or you can type in the name of a
node. Put the name inside quotation marks if it contains spaces.

Similarly, in the remaining fields, you can leave the variables that are shown as defaults, or
type in a string (using quotation marks if the string contains spaces). For descriptions of the
contents of these variables, see the section Variables for Use in OpC Trigger Functions on
page 216.
276 Designing and Managing Behavior Models

Inform Platform
If the current alarm transition was caused by a trigger fired by an OpC mask, these variables
contain values taken from the IT/O message that caused the trigger to be fired. Otherwise, they
contain the values used the last time that the current alarm instance performed an Inform OpC
action. If the alarm instance has not performed an Inform OpC action previously, the variables
contains null strings.

Note NerveCenter appends a string to your message text. The content of the string is determined
by the type of message that prompted the current alarm transition: an OpC message, a trap,
or a response to a poll. If an OpC message caused the transition, NerveCenter appends the
contents of the message’s fields. If a trap caused the transition, NerveCenter appends the
contents of the trap and its variable bindings. If a response to a poll caused the transition,
NerveCenter appends attribute/value pairs for the attributes used in the poll condition.

4. Select the OK button in the Inform OpC Action dialog.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

Inform Platform
You can design alarms to notify the following network management platforms of significant events
that require your attention:

� MicroMuse Netcool/OMNIbus

� IBM Tivoli Enterprise Console

� Computer Associates Unicenter TNG

(For more information about integrating NerveCenter with one of the platforms listed above, see
Integrating NerveCenter with a Network Management Platform.)

In addition, you must have a corresponding network management platform event configured to
listen for the specific trap number.

� To configure an Inform Platform action:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Inform Platform from the pop-up menu.
Chapter 12, Alarm Actions 277

Inform Platform
The Inform Action dialog is displayed.

3. In the Specific Number field, enter the specific trap value you want to use for the Inform.
Typically, this number would be between 100000 and 199999.

For more information about the specific number field, see Inform Specific Numbers on
page 279.

4. In the Inform Hosts panel, select the checkbox that corresponds to the network management
platform that will receive this Inform.

5. Select the OK button.

The new action is added to the transition.

6. Select the OK button again to close the Transition Definition dialog box and save your action.

Note When you are finished making changes to an alarm’s definition, select Save to save all
changes before closing the Alarm Definition window.

Informs contain the following information in addition to the specific trap number you enter:

� A timestamp.

� A generic trap number. This number will always be 6.

� An enterprise. The enterprise OID will always be 1.3.6.1.4.1.78.

� A list of variable bindings. For a list of these variable bindings, see the section Variable
Bindings for NerveCenter Informs on page 207.
278 Designing and Managing Behavior Models

Inform Specific Numbers
Inform Specific Numbers
When creating an Inform or Inform Platform action, you are expected to supply a Specific Number
for the Inform. Normally, you should enter a number in the range 100000 to 199999 or leave this
field blank. The trap numbers 0 to 99999 are reserved for NerveCenter use, and the numbers
200000 and above are reserved for future use.

The number you supply becomes the specific trap number in the trap-like message that is sent to all
the destinations that have been configured to receive Inform messages. If the destination is a
network management platform, such as OpenView Network Node Manager, you must create a new
event message for the platform that will be posted when OpenView receives your Inform message.

If the destination is another NerveCenter server, you must create a trap mask in the destination
NerveCenter to capture the Inform message. (For information on how to create such a trap mask,
see the section Creating a Trap Mask on page 205.) The portion of NerveCenter that must be
installed with a network management platform defines general event messages for these default
specific-trap values. However, other NerveCenter servers know nothing of default values in Inform
messages sent by this NerveCenter server. For that reason, you must create a trap mask in the
destination NerveCenter to receive the Inform message.

If you leave the Specific Number field blank, NerveCenter supplies a default specific trap number.
NerveCenter creates this default value by adding 1000 to the severity level of the destination alarm
state. Thus, if the Inform action takes place on a transition to a Critical state, the default specific
number is 1012, because the severity level of Critical is 12.

You can determine a severity’s number by choosing Severity List from the client’s Admin menu.

When NerveCenter sends Informs to your platform, NerveCenter first checks the minimum severity
value configured in NerveCenter Administrator to ensure that the trap value for the Inform matches
or exceeds that severity. There is one case when NerveCenter disregards the minimum severity
value specified in Administrator: After NerveCenter sends an Inform, if the condition returns to a
normal state-that is, a state below the minimum severity threshold you configure-it’s important that
NerveCenter notify the platform of this change. Therefore, if a node transitions the alarm from a
severity above the minimum value to a severity below the minimum value, and the transition
includes and Inform action, NerveCenter will send a Normal Inform to the platform. This allows
the platform to reset the mapped severity color associated with the node.
Chapter 12, Alarm Actions 279

Log to Database
Log to Database
The Log to Database alarm action, available only on Windows systems, writes information about
an alarm transition to the NerveCenter database. You can extract logged data from the database
using any ODBC-compliant reporting tool.

Note Over use of Log to Database may slow down NerveCenter’s performance.

� To add a Log to Database action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all the alarm actions is displayed.

2. Select Log to Database from the pop-up menu.

The Log to Database Action dialog is displayed.

3. Enter a number in the Log Identity text field.

Since all Log to Database actions write their output to the same database, you need some way
to determine which data was written by which alarm. This number gives you that ability.

4. To log particular information instead of NerveCenter’s default data, do the following:

a. Deselect the Default Data checkbox.

b. In the Custom Data field, type or paste the variables you want included in the log,
separating each variable with a space.

Tip You can also select a variable from the Special Symbol drop-down listbox and then click the
red arrow.
280 Designing and Managing Behavior Models

Log to File
5. Select the OK button in the Log to Database Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.

See the table Fields in Log Entry or Mail Message on page 268 for a list of the values that
constitute a log file entry. These are the values you can retrieve from the database.

Log to File
The Log to File alarm action writes information about an alarm transition to an ASCII text file.

Note Over use of Log to File may slow down NerveCenter’s performance.

� To add a Log to File action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all the alarm actions is displayed.

2. Select Log to File from the pop-up menu.

The Log to File Action dialog is displayed.

3. In the File Name text field, type in either a filename or a full pathname for your log file.

If you enter a filename, the log file is written to the directory install_directory/Log (Windows)
or install_directory/userfiles/logs (UNIX). If you enter a full pathname, the log file is
written to the directory you specify.
Chapter 12, Alarm Actions 281

Microsoft Mail
4. To log particular information instead of NerveCenter’s default data, do the following:

a. Deselect the Default Data checkbox.

b. In the Custom Data field, type or paste the variables you want included in the log,
separating each variable with a space.

Tip You can also select a variable from the Special Symbol drop-down listbox and then click the
red arrow.

5. Select either the On or Off radio button in the Enable frame.

This option gives you the ability to disable logging without disabling the alarm of which the
logging action is a part.

6. Select either the On or Off radio button in the Verbose Output frame.

If you turn Verbose Output on, NerveCenter labels each value it writes to the log file.
Otherwise, NerveCenter writes only the values, separated by commas, to the log file. This may
be what you want if you are using the log file only as the basis for reports.

7. Select the OK button in the Log to File Action dialog.

8. Select the OK button in the Transition Definition window.

9. Select the Save button in the Alarm Definition window.

See the table Fields in Log Entry or Mail Message on page 268 for a list of the values that
constitute a log file entry. And remember that if you create your log file in non-verbose mode, the
values in an entry are not labeled; they are separated by commas. You may need to refer to the table
mentioned above to interpret the contents of a log entry.

Microsoft Mail
The Microsoft Mail alarm action—available when the NerveCenter server is running on a Windows
platform—enables an alarm to send mail concerning a transition to clients of a Microsoft Exchange
Server. This mail contains the name of the alarm that underwent the transition, the name and
severity of the destination state, the name of the node being monitored, and so on.

Note Before you can use this action, the person who configured NerveCenter must have set up a
Microsoft Exchange Server profile and set up NerveCenter correctly. This setup is covered
fully in Managing NerveCenter.
282 Designing and Managing Behavior Models

Notes
� To add a Microsoft Mail action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Microsoft Mail from the pop-up menu.

The Microsoft Mail Action dialog is displayed.

3. Enter a recipient for the mail in the Receiver text field.

4. Select the OK button in the Microsoft Mail Action dialog.

The new action appears in the list of actions in the Transition Definition window.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

For an explanation of the values that appear in a mail message that results from this action, see the
table Fields in Log Entry or Mail Message on page 268.

Notes
Whenever you create an alarm, you can—and should—create notes that document the alarm.
Generally, this documentation should accomplish the following goals:

� Explain the purpose of the alarm

� Briefly describe the alarm’s states and transitions

� List the polls, masks, and alarms that fire triggers that can affect the alarm

� Describe the actions that take place during alarm transitions, especially Fire Trigger and Perl
Subroutine actions

� Document any programs or scripts that are called via a Command action

� Name any reports that are run against data logged by the alarm

� Explain any customization required to work with the alarm
Chapter 12, Alarm Actions 283

Notes
Using the Notes alarm action you can cause an alarm’s notes to be displayed by a behavior model.
The notes are displayed in the Alarm Definition Notes window when the transition with which the
Notes action is associated occurs. For example, adding a Notes action to the first transition in the
predefined alarm IfDataLogger would cause the notes in Figure 12-9 to be displayed whenever that
transition occurred:

Figure 12-9. Notes for IfData_LogToFile Alarm

� To add the Notes alarm action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Notes from the pop-up menu.

The Notes action is added to the list of actions in the Transition Definition window.

3. Select the OK button in the Transition Definition window.

4. Select the Save button in the Alarm Definition window.
284 Designing and Managing Behavior Models

Paging
Paging
The Paging action dials a pager using a modem attached to the machine running the NerveCenter
server. The Paging action then relays to the pager a numeric code that corresponds to the alarm that
initiated the action. If you want to send a text message to an alphanumeric pager, you must use one
of the mail alarm actions (Microsoft Mail or SMTP Mail) with third-party software that includes a
mail spool monitoring function. In this case, the mail spool monitor detects a message, calls the
pager on a special line, and downloads the mail message.

Before you can use the Paging action, someone must have configured NerveCenter to handle
paging actions correctly. This configuration is done from the NerveCenter Administrator and is
documented in Managing NerveCenter.

� To add a Paging action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Paging from the pop-up menu.

The Paging Action dialog is displayed.

3. Type the pager’s phone number in the Pager Number field.

The pager number is the sequence of digits and special Hayes AT commands needed by the
Paging action to reach the pager. Special Hayes commands include the comma or p, which
causes a pause (while the Paging action waits for a secondary dial tone) and many others. For a
list of valid commands, see your modem manual.

4. Type in the Alarm Code field a number that identifies the network situation being reported.

The alarm code is a sequence of digits that is displayed on the pager. The maximum number of
digits that a pager can display varies from pager to pager. If you don’t supply an alarm code, a
default value of 911 is used.

Tip If most of your transitions that include Paging actions also include Inform actions, you might
consider using each Inform’s specific trap number as the alarm code for the corresponding
Paging action.
Chapter 12, Alarm Actions 285

Perl Subroutine
5. Type the character that terminates the paging connection in the Terminate String field.

This character is a key used by the paging system to terminate the connection and send the
page. It differs from system to system, but is usually # (pound sign) or * (asterisk). Consult
your paging system manual to determine the correct key for your system. If you don’t specify a
key, the Paging action uses the default value #.

6. Select the OK button in the Paging Action dialog.

The new action appears in the Actions list in the Transition Definition window.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

Perl Subroutine
The Perl Subroutine alarm action enables you to execute a Perl subroutine when a particular alarm
transition occurs. This action is similar to the Command action in that it enables you to execute a
script. However, the Perl Subroutine action can be much more powerful than the Command action
because:

� NerveCenter provides a set of functions for use in Perl subroutines. These functions enable you
to access the contents of a trigger’s variable bindings, fire triggers, assign property groups to
nodes, and so on. For complete information about these functions, see the section Functions
for Use in Perl Subroutines on page 290.

� NerveCenter provides a set of variables for use in Perl subroutines that give you access to a
great deal of internal NerveCenter information about the alarm transition that just occurred.
For details, see the section NerveCenter Variables on page 293.

Note You can call Perl subroutines defined outside of NerveCenter from the command line;
however, these Perl subroutines use the Perl interpreter installed by the user and not the Perl
engine embedded in NerveCenter. Also, Perl programs run outside of NerveCenter will not
have access to any NerveCenter variables or data structures.

Using these functions and variables, you can create scripts that you could not write using another
language. The section Perl Subroutine Example on page 296 presents an example of how you might
use the Perl Subroutine action.

� To add a Perl Subroutine to a transition:

1. Define the Perl subroutine. This task is documented in the section Defining a Perl Subroutine
on page 288.

2. From the Transition Definition window, select the New Action button.
286 Designing and Managing Behavior Models

Perl Subroutine
A pop-up menu listing all alarm actions is displayed.

3. Select Perl Subroutine from the pop-up menu.

The Perl Subroutine Action dialog is displayed.

4. Select a Perl subroutine from the Name drop-down list.

This list contains all the compiled Perl subroutines stored in the NerveCenter database.

5. Select the OK button in the Perl Subroutine Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.
Chapter 12, Alarm Actions 287

Perl Subroutine
Defining a Perl Subroutine

Before you can add a Perl subroutine to a transition, you must write it (obviously) and store a
compiled version of it in the NerveCenter database.

Note Perl subroutines that you define inside NerveCenter use the Perl engine embedded in
NerveCenter and not any Perl interpreters installed outside of NerveCenter. Any Perl
programs run outside of NerveCenter will not have access to any NerveCenter variables or
data structures.

Caution NerveCenter’s Perl interpreter is single threaded. This means that only one poll, trap
mask function, Perl subroutine, or action router rule can run at one time. Perl scripts that
take a long time to run, such as logging to a file, performing database queries, or issuing
external system calls, can slow down NerveCenter’s performance. If you have need of
such Perl scripts in your environment, use the scripts sparingly.

� To define a Perl subroutine within NerveCenter:

1. From the Admin menu in the main client window, choose Perl Subroutine List.

The Perl Subroutine List window appears.

This window contains a list with an entry for each Perl subroutine defined in your NerveCenter
database. The Compiled Status column indicates whether the subroutine has been successfully
compiled. From this window, you can add a new subroutine, modify an existing subroutine, or
view the notes for a subroutine.

2. To add a new subroutine to NerveCenter, select the New button.
288 Designing and Managing Behavior Models

Perl Subroutine
The Perl Subroutine Definition window appears.

This window enables you to name and define a new Perl subroutine.

3. Type the name of your new Perl subroutine in the Name field.

Note The maximum length for Perl subroutine names is 255 characters.

4. To document your Perl subroutine, select the Notes button, enter a description in the Perl
Subroutine Notes window, and select the OK button in that window.

5. Type your Perl subroutine in the Subroutine text entry box.

Use Perl version 5 to write your subroutine. You can also make use of the NerveCenter
functions and variables discussed in the sections Functions for Use in Perl Subroutines on
page 290 and NerveCenter Variables on page 293

If you right-click in the Perl-subroutine editing area, you’ll see a pop-up menu that lists all the
functions and variables available for writing Perl subroutines. For more information about this
pop-up menu, see the section Using the Pop-Up Menu for Perl on page 160.

Note The maximum length for identifiers in Perl subroutines is 251 characters (252 including the
variable type identifier character $, %, and so on).

6. Select the Save button in the Perl Subroutine Definition window.

NerveCenter automatically attempts to compile the subroutine. If your Perl subroutine does not
compile correctly, NerveCenter displays an error message from the Perl compiler. It also saves
the subroutine and places it in the Perl Subroutine List, with the Compiled Status listed as Not
Compiled.
Chapter 12, Alarm Actions 289

Perl Subroutine
If your Perl subroutine compiles successfully, the saved subroutine is available for use in a Perl
Subroutine alarm action. It won’t be executed unless it’s made the object of a Perl Subroutine
action and the associated alarm transition occurs.

Caution Do not call the exec or exit function from within your Perl subroutine. These statements
may cause the NerveCenter server to terminate.

Functions for Use in Perl Subroutines

NerveCenter provides a number of functions that you can use in your Perl subroutines. The list
below indicates what types of functions are available and where you can find detailed information
about each function:

� Variable-binding functions. These functions enable you to determine the number of variable
bindings in a trigger’s variable-binding list and to obtain information about each variable
binding. For instance, you can retrieve the subobject and attribute associated with a
variable-binding and the value of a variable-binding.

For reference information about these functions, see the section Variable-Binding Functions on
page 182.

� String-matching functions. These functions enable you to determine whether a string
contains another string or a particular word. The functions are useful in conditions that test the
value of a variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions on
page 159.

� DefineTrigger(). This function enables you to create triggers which you can assign to
variables and fire using FireTrigger() in NerveCenter Perl expressions.

For reference information about this function, see the section DefineTrigger() Function on
page 155.

� FireTrigger(). This function enables you to fire a trigger from your Perl subroutine. You can
specify the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on
page 156.

� AssignPropertyGroup(). This function enables you to assign a property group to the node
associated with a trigger.

For reference information about this function, see the section AssignPropertyGroup() Function
on page 158.

� in(). This function determines whether one scalar value is in a set of scalar values.

For reference information about this function, see the section in() Function on page 159.
290 Designing and Managing Behavior Models

Perl Subroutine
� Counter(). This function returns the current value of an alarm counter. For reference
information about this function, see the section Counter() Function on page 291.

� Node relationship functions. These functions enable you to import, export, and delete node
parenting relationships from the NerveCenter database. You can use these functions in Perl
subroutines that are called from alarms that you transition on demand. Node Relationship
Functions on page 291.

Counter() Function

You use the Counter() function to get the value of an alarm counter for a particular alarm instance.
The function can only be called from a Perl Subroutine alarm action or an Action Router rule.

The syntax of the Counter() function is shown below:

Counter()

Syntax: Counter("counterName")

Arguments:

counterName - The name of an existing alarm counter.

Description: The function returns the value of the specified counter.

Node Relationship Functions

The following functions import, export, and delete node parenting relationships from the
NerveCenter database. You can use these functions in Perl subroutines that are called from alarms
that you transition on-demand. One use for these functions is with the downstream alarm
suppression behavior model that is shipped with NerveCenter. For more information, refer to the
Open white paper, Open NerveCenter: Downstream Alarm Suppression.

LoadParentsFromFile()

Syntax: LoadParentsFromFile(filename)

Arguments:

filename - The name of the OVPA or manually created file containing the child parent
relationships. This file should list each child node followed by the parent nodes in
space-delimited fashion.

Description: Imports an OVPA or manually created file containing node parenting
relationship information into the NerveCenter database.

Example: This statement loads the node relationship file data from the file nodeparents.dat
into the NerveCenter database:

NC:: LoadParentsFromFile(nodeparents.dat)
Chapter 12, Alarm Actions 291

Perl Subroutine
DumpParentsToFile()

Syntax: DumpParentsToFile(filename)

Arguments:

filename - The name of the file NerveCenter will output containing the child parent
relationships exported from NerveCenter database.

Description: Exports node parenting relationship information from the NerveCenter database
to the specified file on the local machine.

Example: This statement exports node relationship information from the NerveCenter
database to the file nodeparents.dat:

NC:: DumpParentsToFile(nodeparents.dat)

RemoveAllParents()

Syntax: RemoveAllParents()

Description: Deletes node parenting relationship information from the NerveCenter database.

Example: This statement deletes node relationship information from the NerveCenter
database.

NC:: RemoveAllParents

NerveCenter Variables

NerveCenter defines a number of variables for use in Perl subroutines, Command Alarm actions,
and logging actions. These variables contain information about the alarm transition that just
occurred and about the trigger that caused the transition.

The variables (and functions) available to you for use in poll conditions, trigger functions, Action
Router rule conditions, and Perl Subroutine alarm actions are summarized in a pop-up menu for
Perl accessible via a right mouse click in the respective editing area. (See the section, Using the
Pop-Up Menu for Perl on page 160, for more information.)

The variables available to you for use in Command Alarm actions and the logging actions are
available to you via the Special Symbol drop-down listbox.

The complete list of NerveCenter variables that you can use are shown in Table 12-5:
292 Designing and Managing Behavior Models

Perl Subroutine
Table 12-5. NerveCenter Variables

Variable Contains

$AlarmInstanceID String. The unique identifier for an alarm instance managed by a
NerveCenter Server. If you are connected to more than one server, you can
use the $NCHostName variable to identify the server associated with the
alarm instance.

$AlarmName String. The name of the alarm whose instance just underwent a transition.

$AlarmProperty String. The name of the alarm’s property.

$AlarmTransitionTime String. The time at which the alarm transition occurred. This time is
formatted as follows: mm/dd/yyyy hh:mm:ss day. An example of an alarm
transition time is 06/02/1998 11:02:26 Tue.

$Date Number. The date on which the alarm transition occurred. When you use
this variable in a comparison, compare it to a value of the form
mm/dd/yyyy. Before using this value in the comparison, NerveCenter
converts it to a number of seconds since January 1, 1970.

$DayOfWeek Number. The day of the week on which the alarm transition occurred.
When you use this variable in a comparison, compare it to one of the
following values: SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, and SATURDAY. These values are converted to
numbers between 0 and 6 before they are used in the comparison.

$DestState String. The state of the alarm instance following the current transition.

$DestStatePlatformSev String. The network management platform severity that is mapped to
$DestStateSev.

$DestStateSev String. The severity of the state where the transition ended.

$NCHostName String. The NerveCenter Server associated with an alarm instance.

$NewMaxNodePlatformSev String. The network management platform severity that is mapped to
$NewMaxNodeSev.

$NewMaxNodeSev String. The maximum severity associated with a node, following the
current transition. This maximum severity is determined by looking at the
states of all alarm instances that are monitoring the node.

$NodeAddress String. The IP address of the node being monitored.

$NodeAddressList String. A comma-separated list of all the IP addresses associated with the
node being monitored. No white space is allowed in this list.

$NodeName String. The name of the node being monitored by the alarm instance that
underwent the transition.

$NodePropertyGrp String. The property group of the node being monitored.
Chapter 12, Alarm Actions 293

Perl Subroutine
$NoOfVarBinds Number. The number of variable bindings in the trigger that caused the
alarm transition. These variable bindings may have been derived from a
poll condition or an SNMP trap.

$OpcApplication String. If an IT/Operations message caused the transition, this variable
contains the value of the application field in the message.

$OpcGroup String. If an IT/Operations message caused the transition, this variable
contains the value of the message-group field in the message.

$OpcMessage String. If an IT/Operations message caused the transition, this variable
contains the value of the message-text field in the message.

$OpcMsgId String. If an IT/Operations message caused the transition, this variable
contains the value of the message-number field in the message.

$OpcNodeName String. If an IT/Operations message caused the transition, this variable
contains the value of the node field in the message. The node referred to in
this field is the one on which the condition being reported occurred.

$OpcObject String. If an IT/Operations message caused the transition, this variable
contains the value of the object field in the message.

$OpcSeverity String. If an IT/Operations message caused the transition, this variable
contains the value of the severity field in the message.

$OpcType String. If an IT/Operations message caused the transition, this variable
contains the value of the message-type field in the message.

$OrigState String. The state of the alarm instance prior to the current transition.

$OrigStatePlatformSev String. The network management platform severity that is mapped to
$OrigStateSev.

$OrigStateSev String. The severity of the state where the transition began.

$PollKey String. If a poll caused the transition, this variable contains a value that
uniquely describes the poll and the alarm instance with which it
interacted. That value has the format
pollID.nodeID.baseObject.instance. $PollKey is usually used as an index
into a Perl hash.

$PrevMaxNodePlatformSev String. The network management platform severity that is mapped to
$PrevMaxNodeSev.

$PrevMaxNodeSev String. The maximum severity associated with a node, prior to the current
transition. This maximum severity is determined by looking at the states
of all alarm instances that are monitoring the node.

$ReadCommunity String. The read community string of the node being monitored.

Table 12-5. NerveCenter Variables (continued)

Variable Contains
294 Designing and Managing Behavior Models

Perl Subroutine
$Time Number. The time at which the alarm transition occurred. When you use
this variable in a comparison, compare it to a value of the form hh:mm.
NerveCenter converts this value to a number of seconds before
performing the comparison.

$TrapPduAgentAddress String. If an SNMP trap caused the transition, this variable contains the
trap’s agent address.

$TrapPduCommunity String. If an SNMP trap caused the transition, this variable contains the
trap’s community string.

$TrapPduEnterprise String. If an SNMP trap caused the transition, this variable contains the
trap’s enterprise OID.

$TrapPduGenericNumber Number. If an SNMP trap caused the transition, this variable contains the
trap’s generic trap number.

$TrapPduSpecificNumber Number. If an SNMP trap caused the transition, this variable contains the
trap’s specific trap number.

$TrapPduTime Number. If an SNMP trap caused the transition, this variable contains the
trap’s timestamp.

$TriggerBaseObject String. The base object portion of the trigger’s subobject attribute. For
example, if the trigger’s subobject is IfEntry.2, the base object is ifEntry.

$TriggerInstance Number. The instance portion of the trigger’s subobject attribute. For
example, if the trigger’s subobject is IfEntry.2, the instance is 2.

$TriggerName String. The name of the trigger that caused the alarm transition.

$VarBinds String. The list of all variable bindings in the form attribute=value. In the
case of Perl subroutines and Action Router rules, it makes sense to use
attribute name, value or object for an individual variable binding.

$VB(n) String. The nth variable binding. You can use $VB(n) in Log to File and
Log Database alarm actions only.

$WriteCommunity String. The write community string of the node being monitored.

Table 12-5. NerveCenter Variables (continued)

Variable Contains
Chapter 12, Alarm Actions 295

Send Trap
Perl Subroutine Example

As a simple example, suppose that you want to poll a node for the value of an attribute and to fire
different triggers depending on the value. Let’s say that you’re interested in the value of
ifEntry.ifOperStatus and that you want to fire different triggers for the values 1 (up), 2 (down), and
3 (testing). You also want to fire a fourth trigger if the value is some other number.

You could solve this problem by using multiple polls with the poll conditions
ifEntry.ifOperStatus == 1, ifEntry.ifOperStatus == 2, and so on. However, this
would be very inefficient. A better solution would be to use the poll to retrieve the value of the
attribute and to fire a trigger if it is successful. So the poll condition would simple be:

ifEntry.ifOperStatus present

Then, on the transition associated with the poll’s trigger, you could execute a Perl subroutine. This
subroutine might look something like this:

if (ifEntry.ifOperStatus == 1) {
FireTrigger("OperStatusUp");

}
elsif (ifEntry.ifOperStatus == 2) {

FireTrigger("OperStatusDown");
}
elsif (ifEntry.ifOperStatus == 3) {

FireTrigger("OperStatusTest");
}
else {

FireTrigger("OperStatusBad");
}

Send Trap
The Send Trap alarm action enables you to send an SNMP v1 trap when a transition occurs and
gives you virtually complete control over the contents of the trap.

Note NerveCenter does not send SNMP v3 traps, because under SNMP v3, a node’s IP address is
no longer sent in the packet’s header; therefore, NerveCenter cannot simulate a node’s IP
address and send the SNMP v3 trap.

Generally, when one alarm must communicate with another, the first uses the Fire Trigger action to
fire a trigger that causes a transition in the second. However, Send Trap can also be used for this
type of inter-alarm communication. The first alarm can send a trap to the NerveCenter server, the
server can process the trap using a trap mask (which can fire a trigger), and the trigger can cause a
transition in the second alarm. This is a more roundabout way of firing the required trigger, but
gives you the ability pass the trap’s variable bindings, along with the trigger, to the second alarm. In
addition, Send Trap enables an alarm being managed by one NerveCenter server to communicate
with an alarm being managed by another server, while Fire Trigger does not.
296 Designing and Managing Behavior Models

Send Trap
Of course, you aren’t limited to sending traps to NerveCenter. You can send a trap to any
application that knows how to process SNMP traps.

� To add a Send Trap action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Send Trap from the pop-up menu.

The Send Trap Action dialog is displayed.

3. In the Source field, enter information about node whose address you want to appear in the
agent-address field of the trap PDU.

The valid values for this field are:

� $NodeName (the default value), which represents the node associated with the trigger that
caused the transition.

� $NCHostName, which represents the node on which the active NerveCenter server is
running.

� A node name.

� An IP address. Using an IP address is generally more efficient than using a node name
because it eliminates the name-to-address translation.
Chapter 12, Alarm Actions 297

Send Trap
4. In the Destination field, enter information about the node to which the trap should be sent.

The valid values for this field are the same as those for the Source field. $M is the default.

5. Enter in the Port field the number of the port on the destination machine to which the trap
should be sent.

Generally, SNMP traps are received on port 162, so 162 is the default value.

6. Enter a community name in the Community field.

This is the community name that a manager needs to know in order to access the agent that is
sending the trap. The default value is public.

7. Select one of the three options from the Trap Numbers drop-down list: Default, Trap, and
Custom.

If you select Default, your trap’s generic trap number will be 6, and its specific trap number
will be 1.

If you select Trap, your trap’s generic and specific trap numbers will match those of the trap
associated with the trigger that caused the alarm transition.

If you select Custom, you can specify a generic trap number using the Generic drop-down list.
In addition, if you select a generic trap number of 6, you can enter a specific trap number in the
Specific field.

8. In the Enterprise field, enter an object identifier, or the corresponding name, for the device
that is the source of the trap.

The valid values for this field are:

� $P (the default), which indicates that the enterprise field in the trap you’re sending should
match the enterprise field in the trap associated with the trigger that caused the alarm
transition.

Note that if the trigger that caused the transition with which this action is associated is not
caused by a trap, $P will not have a value, and the Send Trap action will not take place.

� An object identifier, such as 1.3.6.1.4.1.9.

� A name associated with an object identifier in an ASN.1 file.

Caution Be aware that traps from the Open object ID (1.3.6.1.4.1.78) cannot be seen by
NerveCenter because they are forwarded to your platform.

9. Enter information for each variable binding to be included in the trap PDU.

For each variable binding, perform the following steps.
298 Designing and Managing Behavior Models

Send Trap
a. If you want a variable binding to contain exactly the same information as the
corresponding variable binding in the trap associated with the trigger that caused the alarm
transition, select $P from the Base Object list and then select the Insert button

If you perform step a, you can the skip the remaining steps in this procedure. Otherwise,
go on to step b.

b. Select a base object from the Base Object list.

c. Select an attribute from the Attribute list.

d. Type an instance in the Instance field.

Using your base object, attribute, and instance, NerveCenter creates the object identifier
portion of the variable binding. For example, if you supply the base object system, the
attribute sysUpTime, and the instance 0, NerveCenter builds an OID of 1.3.6.1.2.1.1.3.0.

e. Enter a value for the attribute instance in the Attribute Value field.

f. Select the Insert button.

10. Select the OK button in the Send Trap Action dialog.

11. Select the OK button in the Transition Definition window.

12. Select the Save button in the Alarm Definition window.
Chapter 12, Alarm Actions 299

Set Attribute
Set Attribute
The Set Attribute alarm action enables you to set selected attributes of an alarm, a mask, a poll, or a
node. For alarms, masks, and polls, you can turn an object on or off. For nodes, you can assign the
node a property group, or you can suppress or unsuppress the node.

A good example of the use of this action occurs in the predefined alarm DwnStrmSnmpStatus,
which is part of a behavior model that suppresses alarms from nodes that are downstream from a
router that is down. The state diagram for this alarm is shown in Figure 12-10.

Figure 12-10. DwnStrmSnmpStatus Alarm

When the behavior model discovers that a node is unreachable because of a router that is down, it
fires the trigger Down and uses the Set Attribute action to turn suppression on for the node it is
tracking. Suppressing the node causes all insuppressible polls to stop polling the node. Similarly, if
the poll IcmpPoll or IcmpFastPoll (both of these polls are insuppressible) determines that the node
is reachable again, the alarm uses the Set Attribute action to turn suppression off for the node. At
this point, normal polling resumes.

Note If your Set Attribute alarm action turns an alarm off, any pending triggers fired by that alarm
are cleared if the Clear Triggers for Reset To Ground or Off checkbox is checked in the
alarm’s definition window.

� To add a Set Attribute alarm to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select Set Attribute from the pop-up menu.
300 Designing and Managing Behavior Models

Set Attribute
The Set Attribute Action dialog is displayed.

In this release of NerveCenter, the Host field is not used.

3. From the Object Type drop-down list, select the type of object for which you want to set an
attribute.

4. Select the name of the object whose attribute you want set from the Name drop-down list.

For an alarm, a mask, or a poll, your options include all the objects of that type in the
NerveCenter database. For a node, you can select any of the nodes in the NerveCenter database
or the variable $NodeName. This variable contains the name of the node associated with the
trigger that caused the transition.

5. Select the object attribute you want to set using the Attribute drop-down list.

If the Object Type is Alarm, Mask, or Poll, the Attribute field is read only because the only
attribute you can set is State (the object’s Enabled status). For a node, you can select either
Property Group or Suppress.

6. Select the value to which you want to set the attribute from the Value drop-down listbox.

7. Select the OK button in the Set Attribute Action dialog.

8. Select the OK button in the Transition Definition window.

9. Select the Save button in the Alarm Definition window.
Chapter 12, Alarm Actions 301

SMTP Mail
SMTP Mail
The SMTP Mail alarm action enables an alarm to send mail concerning a transition to anyone with
access to an SMTP server. This mail contains the name of the alarm that underwent the transition,
the name and severity of the destination state, the name of the node being monitored, and so on.

Note Before you can use this action, NerveCenter must specify an SMTP server. This setup is
covered fully in Managing NerveCenter.

� To add an SMTP Mail action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select SMTP Mail from the pop-up menu.

The SMTP Mail Action dialog is displayed.

3. Enter a recipient for the mail in the Receiver text field.

4. Select the OK button in the SMTP Mail Action dialog.

The new action appears in the list of actions in the Transition Definition window.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

For an explanation of the values that appear in a mail message that results from this action, see the
table Fields in Log Entry or Mail Message on page 268.
302 Designing and Managing Behavior Models

SNMP Set
SNMP Set
The SNMP Set alarm action enables you to set one or more values in the MIB of an SNMP agent
residing on one of your managed nodes. When the transition with which this action is associated
occurs, NerveCenter sends an SNMP set request, which includes information you’ve supplied, to
the node where the agent resides.

� To add an SNMP Set action to a transition:

1. From the Transition Definition window, select the New Action button.

A pop-up menu listing all alarm actions is displayed.

2. Select SNMP Set from the pop-up menu.

The SNMP Set Action window is displayed.

3. Enter the destination for the SNMP set request in the Destination Host/IP Address field, or
leave the default value, $NODE.
Chapter 12, Alarm Actions 303

SNMP Set
The valid values for this field are:

� $NODE, a variable that contains the node associated with the trigger that caused the alarm
transition. For example, if a poll generates the trigger, $NODE contains the name of the
node that was polled.

� The name of a node.

� The IP address of a node.

4. Enter a write community string in the Community String field, or leave the default value,
$WRITE_COMMUNITY.

The valid values for this field are:

� $WRITE_COMMUNITY, a variable containing the write community value associated
with the destination node.

� A community name.

5. Enter a port number in the Port field, or leave the default value, $PORT. This field indicates
the port to which the SNMP message will be sent.

The valid values for this field are:

� $PORT, a variable containing the port number associated with the destination node. If the
node’s Port attribute is blank, $PORT represents the value 161.

� A port number.

6. Build a list of variable bindings to be included in your set request’s PDU (protocol data unit).
Each variable binding specifies an attribute to be set and the value to which it should be set.

For each variable binding you want to add to the PDU, perform these steps:

a. Select a base object from the Base Object list.

The base object list contains all the base objects referred to in your compiled MIB. Once
you select a base object, the attributes of that object are listed in the Attribute list.

b. Select an attribute from the Attribute list.

c. Type a value for your attribute in the Attribute Value field.

d. Specify which instance of the attribute you want to set using the Instance field.

If the attribute is a zero-instance attribute, NerveCenter automatically supplies the
instance (0) when you insert the variable binding into the Variable Binding list. In
addition, NerveCenter provides a variable, $I, that you can use to refer to instance
information in the poll or trap mask that generated the trigger.
304 Designing and Managing Behavior Models

SNMP Set
e. Select the Insert button.

Your variable binding is appended to the Variable Binding list.

Note The SNMP Set Action dialog also enables you to modify and delete existing variable
bindings. Use the Update, Delete, and Delete All buttons for these operations.

7. Select the OK button in the SNMP Set Action dialog.

The new action is added to the Actions list in the Transition Definition window.

8. Select the OK button in the Transition Definition window.

9. Select the Save button in the Alarm Definition window.
Chapter 12, Alarm Actions 305

SNMP Set
306 Designing and Managing Behavior Models

13

Performing Actions Conditionally
(Action Router)
When an alarm transition occurs, all the actions associated with that transition are performed
unconditionally. However, the responsibility of one action—Action Router—is to send information
about the transition to the Action Router facility, which performs actions conditionally. That is, the
Action Router action always takes place, but the Action Router facility may or may not initiate
some other action.

Whether the Action Router facility performs one or more actions—such as executing a command
or logging data to a file—depends on rules that you’ve set up using the Action Router. For example,
you might want to specify that if a particular alarm transition occurs at night or on the weekend, an
administrator should be paged. In this case, the alarm transition has the Action Router action
associated with it, and the Action Router rule looks like this:

$DayOfWeek >= MONDAY and $DayOfWeek <= FRIDAY and ($Time < 08:00 or
$Time > 17:00)or ($DayOfWeek == SATURDAY or $DayOfWeek == SUNDAY)
-> Paging 5551234567:911:#

All actions that can be performed from an alarm transition can be performed from the Action
Router, except for the Alarm Counter and Action Router actions. Also, rule conditions can be built
using many types of data, for example:

� The name of an alarm. Did the transition take place in an instance of this alarm?

� The name of a node. Was the alarm instance in which the transition took place monitoring this
node?

� The name of a property group. Does the node that was being monitored have this property
group?

� The severity of the destination alarm state.

� The name of the trigger that caused the transition.

For a complete list of the variables that can be used in an Action Router rule condition, see the table
NerveCenter Variables on page 293.
307

The remainder of this chapter explains how to determine what Action Router rules have already
been defined and how to create new rules. See the following sections:

Section Description

Listing Existing Action Router
Rules on page 309

Explains how to display a list of the Action Router rules currently defined
in the NerveCenter database.

Creating an Action Router Rule
on page 310

Explains how to create a new Action Router rule.
308 Designing and Managing Behavior Models

Listing Existing Action Router Rules
Listing Existing Action Router Rules
This section explains how to display a list of the Action Router rules currently defined in the
NerveCenter database. The section also explains how to view the definition of a particular rule.

For information on creating a new rule, see Creating an Action Router Rule on page 310.

� To display a list of Action Router rules and then display a particular rule’s
definition:

1. From the client’s Admin menu, choose Action Router Rule List.

The Action Router Rule List window is displayed.

This window lists all currently defined Action Router rules. If enough room is available in the
window, you can see, for each rule, the condition under which actions will be performed (the
rule condition) and the actions that will be performed under those conditions (the rule actions).

If you can only see part of the rule, you can either enlarge the window or perform the following
steps.

2. Double-click the rule whose definition you want to see.
Chapter 13, Performing Actions Conditionally (Action Router) 309

Creating an Action Router Rule
The Action Router Rule Definition window is displayed.

3. Select the Rule Condition tab to see the rule condition and the Rule Action tab to see the
actions defined for the rule.

In the figure above, the condition says, “If the alarm transition occurs after hours on a week
day or on a weekend, take the actions listed on the Rules Action page.”

Creating an Action Router Rule
There are two components to an Action Router rule: a condition and a list of actions. For example,
suppose you need to develop a rule that will cause NerveCenter to send you e-mail if a device goes
down. The rule’s condition might be:

$TriggerName eq "deviceDown"

This means that you want to know if the Action Router is notified of a transition that occurred as a
result of a deviceDown trigger.

The rule’s action might be:

SMTP Mail networkadmin@yourcompany.com

This means that if the condition is met, NerveCenter should send SMTP mail to the address shown.

The next two subsections explain how to create such rule conditions and rule actions:

� Defining a Rule Condition on page 311

� Defining a Rule Action on page 315

Note that you must create both a condition and one or more actions to complete an Action Router
rule.
310 Designing and Managing Behavior Models

Creating an Action Router Rule
Defining a Rule Condition

Defining a rule condition is one part of defining an Action Router rule. After defining the rule
condition, you must define a rule action to complete the Action Router rule. For information on
defining a rule action, see the section Defining a Rule Action on page 315.

� To define a rule condition:

1. From the client’s Admin menu, choose Action Router Rule List.

The Action Router Rule List window is displayed.

2. Select the New button in the Action Router Rule List window.

The Action Router Rule Definition window is displayed.

3. Enter a unique name for your Action Router rule in the Name field.

Note The maximum length for Action Router rule names is 255 characters.

4. Write your rule condition in the Rule Condition text area.

You write this rule condition using Perl. However, you need not write a complete Perl
statement. You can assume the following context:

if (...) {
ruleAction;

}

Chapter 13, Performing Actions Conditionally (Action Router) 311

Creating an Action Router Rule
All you must supply is the condition that would fit inside the parentheses. For example,
$OriginStateSev eq "Normal" is a complete rule condition.

Caution NerveCenter’s Perl interpreter is single threaded. This means that only one poll, trap
mask function, Perl subroutine, or action router rule can run at one time. Perl scripts that
take a long time to run, such as logging to a file, performing database queries, or issuing
external system calls, can slow down NerveCenter’s performance. If you have need of
such Perl scripts in your environment, use the scripts sparingly.

To help you write rule conditions, NerveCenter provides several aids:

� A set of variables that contain data you can use in your rule condition. We’ve already seen
a number of these, such as $DayOfWeek, $Time, and $OriginStateSev. For a complete list
of the variables available to you, see the section NerveCenter Variables on page 293.

� A set of functions that you can use in your rule conditions. These functions enable you to
determine whether a variable contains a substring, to access information in the variable
bindings of a trap that caused an alarm transition, and more.

For more information about these functions, see the section Functions for Use in Action
Router Rule Conditions on page 312.

� A pop-up menu that lists the variables and functions you can use in a rule condition and
enables you to enter the name of a variable or function in the rule-condition editing area.
For further information about this pop-up menu, see the section Using the Pop-Up Menu
for Perl on page 160.

� Lists of the alarms, days, nodes, properties, property groups, severities, and triggers that
you can use in a rule condition. Selecting an item from one of these list writes the name of
the selected object to the rule-condition editing area.

For further information about these lists, see the section Using Action Router’s Object
Lists on page 313.

Once you’ve finished building your rule condition, you must go to the Rule Action page and build
a list of rule actions. For instructions on how to build this list, see the section Defining a Rule
Action on page 315.

Functions for Use in Action Router Rule Conditions

NerveCenter provides a number of functions that you can use in your Action Router rule
conditions. The list below indicates what types of functions are available and where you can find
detailed information about each function:

� Variable-binding functions. These functions enable you to determine the number of variable
bindings in a trigger’s variable-binding list and to obtain information about each variable
binding. For instance, you can retrieve the subobject and attribute associated with a
variable-binding and the value of a variable-binding.
312 Designing and Managing Behavior Models

Creating an Action Router Rule
For reference information about these functions, see the section Variable-Binding Functions on
page 182.

� String-matching functions. These functions enable you to determine whether a string
contains another string or a particular word. The functions are useful in conditions that test the
value of a variable or variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions on
page 159.

� in(). This function determines whether one scalar value is in a set of scalar values.

For reference information about this function, see the section in() Function on page 159.

� Counter(). This function returns the current value of an alarm counter. For reference
information about this function, see the section Counter() Function on page 291.

Using Action Router’s Object Lists

If you are writing an Action Router rule condition and need to enter the name of an alarm, you do
not need to:

� Look up the name of the alarm in the Alarm Definition List window.

� Type the name of the alarm in the Rule Condition editing area.

Instead, you can select the name of the alarm from a list of alarms on the Rule Condition page.
Selecting this name copies the name to the Rule Condition editing area, at the point of the cursor.

In addition to a list of alarms, the Rule Condition page provides lists of:

� Days (Days are not really NerveCenter objects.)

� Nodes

� Properties

� Property groups

� Severities

� Triggers
Chapter 13, Performing Actions Conditionally (Action Router) 313

Creating an Action Router Rule
� How to enter the rule condition $AlarmName eq ‘Authentication’:

1. In the Rule Condition editing area enter the text $AlarmName eq using the editing area’s
pop-up help menu or your keyboard.

2. Select the More button on the Rule Condition page to expand the page.

3. Select Alarm from the Condition Type drop-down list.

The list to the right of the drop-down list is populated with the names of all the alarms in the
NerveCenter database.

Note If you were writing a different rule condition, you could have selected a different object from
the drop-down list.

4. Double-click Authentication in the Alarms list.

This action causes the text ‘Authentication’ to be added to the rule condition.

5. After you’ve defined your rule’s action, select the Save button.
314 Designing and Managing Behavior Models

Creating an Action Router Rule
Defining a Rule Action

Once you’ve created an Action Router rule condition, as described in the section Defining a Rule
Condition on page 311, you must create a rule action to complete your Action Router rule. This
action rule contains descriptions of one or more actions that you want to be performed when the
rule condition is met.

� To create an action rule:

1. In the Rule Composition window, select the Rule Action tab.

The Rule Action page is displayed.

2. Select the New Action button.

A pop-up menu listing the actions that you can perform via the Action Router appears. Except
for the Action Router and Alarm Counter actions, you can add to the rule any action that you
can perform from an alarm transition:

� Beep

� Clear Trigger

� Command
Chapter 13, Performing Actions Conditionally (Action Router) 315

Creating an Action Router Rule
� Delete Node

� EventLog

� Fire Trigger

� Inform

� Inform OpC

� Inform Platform

� Log to Database

� Log to File

� Microsoft Mail

� Notes

� Paging

� Perl Subroutine

� Send Trap

� Set Attribute

� SMTP Mail

� SNMP Set

For a description of what an action does, see the appropriate section in Chapter 12, Alarm
Actions

3. Select an action from the list.

All of the actions except Delete Node and Notes require parameters, so a dialog box appears.
Again, refer to the appropriate section in Chapter 12, Alarm Actions for an explanation of how
to supply the necessary parameters.

4. Repeat step 2 and step 3 for each action that you want to add to the rule action.

5. Select the Save button at the bottom of the Rule Composition window.
316 Designing and Managing Behavior Models

14
Creating Multi-Alarm Behavior Models
Most behavior models employ only one alarm. However, some models require two or more alarms.
If a model uses more than one alarm, the alarms generally communicate using the Fire Trigger
alarm action. That is, one alarm fires a trigger that causes a transition in a second alarm.

This chapter presents an example of a multi-alarm behavior model (sometimes referred to as
multi-tier behavior models), which might serve as an example for your own models.

Note Another good example of a multi-alarm behavior model is the downstream alarm
suppression model, NodeStatusDwnStrm, that ships with NerveCenter. For more
information, refer to the white paper, Open NerveCenter: Downstream Alarm Suppression.

Section Description

IfUpDownStatusByType on
page 318

Presents a multi-alarm model that monitors interface operation status.
317

IfUpDownStatusByType
IfUpDownStatusByType
IfUpDownStatusByType is one of the multi-alarm behavior models shipped with NerveCenter and
provides interface management for devices that can be managed using the MIB-II and Frame Relay
MIBs. This model manages the following types of interfaces:

� Asynchronous Transfer Mode (ATM)

� Integrated Services Digital Network (ISDN)

� Fiber Distributed Data Interface (FDDI)

� Frame Relay Permanent Virtual Circuit (PVC) subinterfaces

� Frame Relay

� Local Area Network (LAN)

� Switched Multimegabit Data Service (SMDS)

� Synchronous Optical Network (SONET)

� Wide Area Network (WAN)

The majority of the alarms in this model are subobject scope alarms that categorize an interface (the
possible categories are listed above) and then monitor its status. For most interfaces, the interface
can be up, down, or in testing mode. (The exception is a Frame Relay PVC, which can only be up
or down.)

When an alarm instance transitions to one of these states, it executes an Inform action to notify
OpenView Network Node Manager of the new state. For this Inform action to have the desired
effect, you must integrate the trapd.conf.txt file supplied with these models with the standard

IF-IfStatusIf-IfTypeNotAdminOp

IfUpDownStatusByType Behavior model

If-IfTypeNotAdminOp

IF-IfSelectType

If-IfATMNotAdminOp

If-IfFDDINotAdminOp

IF-IfATMStatus

IF-IfFDDIStatus
318 Designing and Managing Behavior Models

IfUpDownStatusByType
NerveCenter trapd.conf. The trapd.conf.txt file along with the .mod file resides in the
/model/interface_status/updown_bytype directory. For information about importing
behavior models into NerveCenter, see Importing Node, Object, and Behavior Model Files on
page 362.

The interface status alarms are listed below:

� IF-IfATMStatus

� IF-IfFDDIStatus

� IF-IfFramePVCStatus

� IF-IfFrameRelayStatus

� IF-IfISDNStatus

� IF-IfLANStatus

� IF-IfSMDSStatus

� IF-IfSonetStatus

� IF-IfWANStatus

The model file also includes three other alarms: IF-IfStatus, IF-IfColdWarmStart, and
IF-IfNmDemand.
Chapter 14, Creating Multi-Alarm Behavior Models 319

IfUpDownStatusByType
IF-IfStatus Alarm

The predefined alarm IF-IfStatus is a subobject scope alarm that monitors interfaces on the
network. Its definition is shown in Figure 14-1.

Figure 14-1. IF-IfStatus Alarm

IF-IfStatus listens for the trigger IF-IfTypeNotAdminOp, which is fired whenever an interface is
not operationally up (either down or in testing mode). When IF-IfStatus transitions to
IF-IfTypeNotAdminOp, the alarm fires a Perl subroutine, IF-SelectType.
320 Designing and Managing Behavior Models

IfUpDownStatusByType
IF-SelectType Perl Subroutine

IF-SelectType is a Perl subroutine composed of an If statement that reads the instance of
ifEntry.ifType to determine the interface type being monitored and to fire the appropriate trigger.

Figure 14-2. IF-SelectType Perl Subroutine

IF-SelectType fires the appropriate trigger to instantiate the correct interface-type alarm for the
interface that is in a non-operational status.

Chapter 14, Creating Multi-Alarm Behavior Models 321

IfUpDownStatusByType
Interface-type Alarms

The IfUpDownStatusByType behavior model has an alarm for each interface type (ATM, ISDN,
FDDI, and so on) that it monitors. The interface alarms (with the exception of
IF-IfFramePVCStatus) are identical. The definition for these alarms, is shown in Figure 14-3.

Figure 14-3. Interface-type Alarms State Diagram

The interface-type alarms (with the exception of IF-IfFramePVCStatus) contain the following
states:

� Ground

No evidence that the interface is down, or in testing mode.

� IfNotAdminOp

An initial indication that an interface is either down or in testing mode has been received by a
poll. The interface is categorized (ATM, FDDI, LAN, and so on) and the appropriate alarm is
transitioned.

� IfUpDownTrap

Mask indicates that a link is either up or down. The interface is polled. If the interface is up,
NerveCenter sends a 1512 Inform to the platform and returns to Ground. If a cold or warm start
is detected, returns to Ground. If the interface is down or in testing, NerveCenter sends a 1514
Inform to the platform and goes to IfDown.
322 Designing and Managing Behavior Models

IfUpDownStatusByType
� IfDown

Poll indicates that an interface down. NerveCenter sends a 1514 Inform to the platform. The
interface is polled. If the interface is up, NerveCenter sends a 1512 Inform to the platform and
returns to Ground. If a cold or warm start is detected, returns to Ground. If the interface is in
some test mode, NerveCenter sends a 1513 Inform to the platform and goes to IfTesting.

� IfTesting

Poll indicates that an interface is in some test mode. NerveCenter sends a 1513 Inform to the
platform. The interface is polled. If the interface is up, NerveCenter sends a 1512 Inform to the
platform and returns to Ground. If a cold or warm start is detected, returns to Ground. If the
interface is down, NerveCenter sends a 1514 Inform to the platform and goes to IfDown.

IF-IfFramePVC

Unlike the other interface-type alarms, the IF-IfFramePVC relies on a frame relay MIB with which
to monitor frame relay permanent virtual circuit (PVC) subinterfaces. NerveCenter instantiates
IF-IfFramePVC when a frame relay PVC interface is non-active. The definition for
IF-IfFramePVC, is shown in Figure .

Figure 14-4. IF-IfFramePVC State Diagram

IF-IfFramePVCStatus contains the following states:

� Ground

No evidence that the interface is down. If the interface is down, goes to FramePVCUp/Down.
If the interface is active, goes to IfFramePVC.

� FramePVCUp/Down

Mask indicates that a link is either up or down. The interface is polled. If the interface is up,
NerveCenter sends a 1510 Inform to the platform and returns to IfFramePVC. If a cold or
warm start is detected, returns to Ground. If the interface is down, NerveCenter sends a 1511
Inform to the platform and goes to IfFramePVCDown.
Chapter 14, Creating Multi-Alarm Behavior Models 323

IfUpDownStatusByType
� IfFramePVCDown

Poll indicates that an interface down. NerveCenter sends a 1511 Inform to the platform. The
interface is polled. If the interface is up, NerveCenter sends a 1510 Inform to the platform and
goes to IfFramePVC. If a cold or warm start is detected, returns to Ground. If the interface is
up or down, goes to FramePVCUp/Down.

� IfFramePVC

Interface is active. If a cold or warm start is detected, returns to Ground. If the interface is up or
down, goes to FramePVCUp/Down. If the interface is down, NerveCenter sends a 1511 Inform
to the platform and goes to IfFramePVCDown.

IfColdWarmStart Alarm

The IfColdWarmStart alarm detects that a device has been restarted and fires a trigger that causes
all the interface-type alarms monitoring that device to return to Ground state.

Figure 14-5. IF-IfColdWarmStart Alarm

The IfColdWarmStart alarm also fires a trigger that causes a transition in an IfNmDemand alarm.
324 Designing and Managing Behavior Models

IfUpDownStatusByType
IfNmDemand Alarm

An IfNmDemand alarm is instantiated whenever an interface-type alarm transitions to the up,
down, testing, or ground state.

Figure 14-6. IF-IfNmDemand Alarm

When the alarm is created and transitions to the IfNmDemandPoll state, it executes an Inform
action that causes HP OpenView Network Node Manager to demand poll the appropriate device
and reflect the current state of the device and its interfaces in Network Node Manager’s topology
maps. The Inform action that requests the demand poll is made outside of the status alarms—in a
node-scope alarm—to help cut back to the number of requests that can be sent to Network Node
Manager.
Chapter 14, Creating Multi-Alarm Behavior Models 325

IfUpDownStatusByType
326 Designing and Managing Behavior Models

15
Managing NerveCenter Objects
The majority of this book has discussed the function of the various NerveCenter objects and how to
create those objects.

This chapter discusses how to perform other operations on objects, such as copying and deleting
them. It also covers how to change selected object attributes without returning to the object
definition windows. For example, the chapter explains how to change an alarm’s property without
returning to the Alarm Definition window.

Section Description

Enabling Objects on page 328 Explains how turn the following objects on and off: alarms, polls, masks,
and OpC masks.

Copying Objects on page 329 Explains how to make a copy of an alarm, a poll, a mask, an OpC mask, a
node, an Action Router rule, a Perl subroutine, or a property group.

Deleting Objects on page 331 Explains how to delete an object from the NerveCenter database.

Changing an Object’s Property or
Property Group on page 333

Explains how to change an alarm’s or a poll’s property or a node’s
property group.

Changing an Alarm’s Scope on
page 335

Explains how to change an alarm’s scope from the Alarm Definition List
window.

Suppressing Polling on page 336 Explains how to suppress polling by setting a node’s Suppressed attribute
and a poll’s Suppressible attribute.

Changing Other Node Attributes
on page 337

Explains how to change a node’s Managed or Auto Delete attribute.
327

Enabling Objects
Enabling Objects
As we’ve mentioned many times, a behavior model does not become functional until all of the
polls, masks, and alarms in the model are enabled. This section explains how you can quickly
enable, or disable, any poll, trap mask, OpC mask, or alarm.

� To enable one of these objects:

1. Open the appropriate list window: the Poll List, Mask List, OpC Mask List, or Alarm
Definition List window.

The figure below shows the Poll List window.

2. Select the object whose enabled status you want to change.

3. With your cursor positioned over the selected object, click the right mouse button to display a
pop-up menu listing actions you can perform against the object.

If the object is disabled, the Off entry will be grayed out, and if the object is enabled, the On
entry will be grayed out.

4. Select On from the menu to enable the object, or Off to disable it.

The object is now enabled. It’s not necessary to save this change in order for it to take effect.
328 Designing and Managing Behavior Models

Copying Objects
Copying Objects
Being able to copy objects can be very convenient. For example, if you want to create a property
group that is exactly the same as an existing one except that it contains one additional property, it’s
nice to be able copy the existing property group, give the copy a name, and add the one
property—instead of creating a new property group and adding a long list of properties to it. The
same is true if you need to create a new alarm that is similar to an existing alarm, or a new poll that
is similar to an existing one.

NerveCenter enables you to copy most objects. To copy a property group, you select a Copy button
in the Property Group List button. To copy any other object (that supports a copy operation), you
select Copy from a pop-up menu associated with the object. For complete instructions on how to
copy a property group or another object, see the appropriate section below:

� Copying a Property Group on page 329

� Copying Other Objects on page 330

Copying a Property Group

This section explains how to create a copy of an existing property group.

� To copy a property group:

1. Open the Property Group List window.

2. Select the property group you want to copy from the Property Group list.

3. Enter a name for the copy of the property group in the New Property Group field.

The Copy button is enabled.
Chapter 15, Managing NerveCenter Objects 329

Copying Objects
4. Select the Copy button.

5. Select the Save button.

You now have an exact copy of the property group you began with. You’ll probably want to add
properties to, or remove properties from, the new property group and save it again.

Copying Other Objects

This section explains how to make a copy of any one of the following objects:

� Alarm

� Poll

� Mask

� OpC mask

� Node

� Action Router rule

� Perl subroutine

� To copy one of these objects:

1. Open the appropriate list window.

2. Select the object you want to copy from the list.

3. With your cursor over the selected object, click the right mouse button to display a pop-up
menu of actions you can perform against the object.

4. Select Copy from the pop-up menu.

A definition window is displayed. The window contains a complete definition except for a
name.

5. In the definition window, enter a name for the copied object.

6. Select the Save button in the definition window.

You now have an exact copy of the object you began with. Make any necessary changes to the
copy, and save it again.
330 Designing and Managing Behavior Models

Deleting Objects
Deleting Objects
If you have objects in your NerveCenter database that you know you’ll never use again, you can
delete them.

There are two methods of deleting objects in NerveCenter. You delete some objects by selecting a
Delete button in the appropriate definition window. The objects you delete in this way are:

� Property groups

� OID to property group mappings

� Severities

You delete other objects using a pop-up menu in a list window. The objects you delete in this way
are:

� Alarms

� Polls

� Masks

� OpC masks

� Nodes

� Action Router rules

� Perl subroutines

The two procedures for deleting objects are discussed in more detail in the following sections:

� Using a Delete Button on page 332

� Using a Pop-Up Menu on page 333
Chapter 15, Managing NerveCenter Objects 331

Deleting Objects
Using a Delete Button

This section explains how to delete a property group, an OID to property group mapping, or a
severity.

� To delete one of these objects:

1. Open the appropriate list window.

2. Select from the list the object you want to delete.

A Delete button is enabled.

3. Select the Delete button.

A property group can not be deleted if it is currently assigned to a node or is being used in an
OID to property group mapping. If you attempt to delete a property group that is being used in
one of these ways, you’ll see a warning message. Of course, you can remove the dependency
and then delete the property group.

Similarly, you can’t delete a severity that is being used in an alarm. If you try to do so, you see
a dialog similar to the one shown in Figure 15-1:

Figure 15-1. Replace Severity Dialog

The dialog in the figure indicates that the selected severity is being used in the alarm
SynBoardChannel. If you want to go ahead and delete the severity, you must first change the
severity of the affected state in this alarm. You do this by selecting a severity from the
drop-down list and selecting the Save button. (You’ll also have to confirm that you want to
replace the severity.)
332 Designing and Managing Behavior Models

Changing an Object’s Property or Property Group
Using a Pop-Up Menu

This section explains how to delete an alarm, a poll, a mask, an OpC mask, a node, an Action
Router rule, or a Perl subroutine.

� To delete one of these objects:

1. Open the appropriate list window.

2. Select the object you want to delete.

3. With your cursor positioned over the selected object, click your right mouse button to display a
pop-menu that lists actions you can perform from this window.

4. Select the Delete entry from the pop-up menu.

A Confirm Deletion dialog appears, asking if you’re sure you want to delete the object.

5. Select the Yes button in the Confirm Deletion dialog.

The object is deleted.

Changing an Object’s Property or Property Group
NerveCenter provides shortcuts for changing a poll’s or an alarm’s property and for changing a
node’s property group. For instructions on how to perform the operation you’re interested in, see
the appropriate subsection:

� Changing a Poll’s or an Alarm’s Property on page 333

� Changing a Node’s Property Group on page 334

Changing a Poll’s or an Alarm’s Property

This section explains how to change the property attribute of a poll or an alarm.

� To change an object’s property:

1. Make sure that the poll’s or alarm’s enabled status is off.

For instructions on how to disable an object, see Enabling Objects on page 328.

2. With the Poll List or Alarm Definition List window open, select the object whose property you
want to change.
Chapter 15, Managing NerveCenter Objects 333

Changing an Object’s Property or Property Group
3. With your cursor positioned over the selected object, click your right mouse button to display a
pop-menu that lists actions you can perform from the list window.

4. Select Property from the pop-up menu.

The Property dialog is displayed.

5. Select a new property for your object from the drop-down listbox in the Property dialog.

The Save button is enabled.

6. Select the Save button.

The object’s property is changed. Re-enable the object if necessary.

Changing a Node’s Property Group

This section explains how to change a node’s property group without going to the Node Definition
window.

� To change a node’s property group:

1. Select Node List from the client’s Admin menu.

The Node List window appears.

2. Select the node whose property group you want to change.

3. With your cursor positioned over the selected node, click your right mouse button to display a
pop-up menu that lists the actions you can take from the Node List window.

4. Select Property Group from the pop-up menu.

The Property Group dialog is displayed.

5. Select the node’s new property group from the drop-down listbox in the Property Group
dialog.
334 Designing and Managing Behavior Models

Changing an Alarm’s Scope
The dialog’s Save button is enabled.

6. Select the dialog’s Save button.

The node’s property group is changed.

Changing an Alarm’s Scope
It’s rarely necessary to change the scope of an alarm since determining the alarm’s scope is usually
a very fundamental part of designing the alarm. However, if the need to change an alarm’s scope
does arrive, you can make this change from the Alarm Definition List window.

� To change an alarm’s scope:

1. Choose Alarm Definition List from the client’s Admin menu.

The Alarm Definition List window is displayed.

2. Select the alarm whose scope you want to change.

3. With your cursor positioned over the selected alarm, click your right mouse button to display a
pop-up menu that lists the operations you can perform from the Alarm Definition List window.

4. Select Scope from the pop-up menu.

The Scope dialog appears.

5. Select a scope from the drop-down listbox in the Scope dialog.

The dialog’s Save button is enabled.

6. Select the Save button.

The alarm’s scope is changed.
Chapter 15, Managing NerveCenter Objects 335

Suppressing Polling
Suppressing Polling
If you want to prevent a particular poll from being sent to a particular node, the node must be
suppressed, and the poll must be suppressible. By default, polls are suppressible; however, nodes
are not ordinarily suppressed. Therefore, keeping a poll from being sent to a node usually just
involves turning on the node’s Suppressed attribute. You may have to edit the poll as well—if
someone has turned off its Suppressible attribute.

The two sections listed below provide instructions on how to perform these tasks:

� Suppressing a Node on page 336

� Making a Poll Suppressible on page 337

Suppressing a Node

This section explains how to suppress a node by enabling its Suppressed attribute.

� To enable this attribute:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. Select the node whose Suppressed attribute you want to enable.

3. With your cursor positioned over the selected node, click your right mouse button to display a
pop-up menu that lists the actions you can take from the Node List window.

4. Select Suppress from the pop-up menu.

This operation is the equivalent of checking the Suppressed checkbox in the Node Definition
window.
336 Designing and Managing Behavior Models

Changing Other Node Attributes
Making a Poll Suppressible

This sections explains how to make a poll suppressible by enabling its Suppressible attribute.

� To enable this attribute:

1. From the client’s Admin menu, choose Poll List.

The Poll List window is displayed.

2. Select from the list the poll whose Suppressible attribute you want to enable.

3. With your cursor positioned over the selected poll, click your right mouse button to display a
pop-up menu listing actions you can take from the Poll List window.

4. Select Suppressible from the pop-up menu.

The poll is now suppressible, which means that the poll cannot cause NerveCenter to poll a
suppressed node.

Changing Other Node Attributes
Earlier sections of this chapter explained how to change a node’s property group and its Suppressed
setting:

� For information on changing a node’s property group, see the section Changing a Node’s
Property Group on page 334.

� For information on turning on a node’s Suppressed attribute, see the section Suppressing a
Node on page 336.

This section explains how to change the values of a node’s Managed and Auto Delete attributes.
Chapter 15, Managing NerveCenter Objects 337

Changing Other Node Attributes
� To change one of these attributes:

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

2. Select a node from the list.

3. With your cursor positioned over the selected node, click your right mouse button to display a
pop-up menu listing the actions you can take from this window.

4. From the pop-up menu, choose Managed, Unmanaged, Auto Delete, or No Auto Delete.

Choosing Managed is the equivalent of checking the Managed checkbox in the Node
Definition window, and choosing Auto Delete is the equivalent of checking the Auto Delete
checkbox. Choosing Unmanaged or No Auto Delete is the equivalent of unchecking the
appropriate checkbox.

The new node setting takes effect.
338 Designing and Managing Behavior Models

16
NerveCenter Severities
Severities are NerveCenter objects that indicate the seriousness of a network or system condition.
For instance, a severity is an important part of the definition of each alarm state. In the alarm
definition in Figure 16-1, you can see that the state LinkDown has the severity Major associated
with it because it is colored orange.

Figure 16-1. Alarm State Severities

In addition, NerveCenter categorizes the conditions it has detected by severity in its alarm summary
windows.
339

The remainder of this chapter explains in detail what constitutes the definition of a severity and
how severities are used in NerveCenter, what predefined severities are supplied with NerveCenter,
and how to create new severities. For information on these topics, see the sections listed below:

Section Description

Definition of a Severity on
page 341

Explains what a NerveCenter severity is and how it is used.

Default Severities on page 344 List the severities that ship with the NerveCenter product.

Creating a New Severity on
page 345

Explains how to create a new severity.

Creating Custom Colors on
page 347

Explains how to create a new color for use in a severity.
340 Designing and Managing Behavior Models

Definition of a Severity
Definition of a Severity
A severity object has the following data set described and defined in Table 16-1.

For more information about these attributes, see the sections:

� Severity Attributes Used by NerveCenter on page 342

� Severity Attributes and Network Management Platforms on page 343

Table 16-1. Definitions of Severity Attributes

Data Member Definition

Name A unique name.

Group The name of the severity group to which the severity belongs. A group
name should describe a general type of condition that NerveCenter can
detect; for instance, the two predefined groups are Fault and Traffic, and
all the predefined severities belong to one of these groups. You can also
define new groups.

Color Each severity has a color associated with it. These severity colors are used
in state diagrams to indicate the severity of alarm states.

Level A severity’s level is intended to reflect the seriousness of an associated
alarm state. That is, an alarm state whose severity has a level of 0
represents a harmless condition, whereas an alarm state whose severity
has a high level represents a serious condition.

Platform name The name of a severity used by your network management platform. If
NerveCenter informs your platform of a condition, the platform uses the
severity defined by this attribute when it displays information about the
event.
Chapter 16, NerveCenter Severities 341

Definition of a Severity
Severity Attributes Used by NerveCenter

The severity attributes Name, Group, and Color are used by NerveCenter when it displays
information about current alarm instances in the Alarm Summary or Aggregate Alarm Summary
window. The figure below shows the correspondence between these attributes and the objects used
in the tree view of the Alarm Summary window.

Figure 16-2. Severity Names, Groups, and Colors

In this figure, there is a severity named Critical, which belongs to the severity group Fault and is
associated with the color red. You can add new severities to the existing groups (Fault and Traffic),
or add severities that belong to a new group. In the latter case, NerveCenter will create a new folder
to represent the new severity group.

Note Severity colors are also used in alarm state diagrams to indicate the severity of particular
states.

Color
Group

Name
342 Designing and Managing Behavior Models

Definition of a Severity
Severity Attributes and Network Management Platforms

The severity attributes Level and Platform Name are used to help define how NerveCenter interacts
with a network management platform.

Level

Each NerveCenter severity must have a unique severity level, which is represented by an integer.
You associate severities that have low severity levels with alarm states representing benign
conditions, and severities that have high levels with states representing serious conditions.

Now, here’s how severity levels affect NerveCenter’s interaction with a network management
platform. When NerveCenter is set up, an administrator can define an “Inform Configuration.” This
configuration indicates where NerveCenter should send messages when it performs Inform alarm
actions. The configuration also specifies a “Minimum Severity.” If the administrator sets the
Minimum Severity to 4, only transitions to alarm states with severity levels of 4 or more can cause
Inform messages to be sent to a platform.

Platform Name

You can associate with each NerveCenter severity the name of a severity defined by your network
management platform. For example, the predefined severity Saturated has associated with it the
platform name Normal. Given this situation, if NerveCenter sends to the platform an Inform
message whose variable bindings indicate that the destination alarm state in NerveCenter had a
severity of Saturated, the platform will interpret this as an event of Normal severity. That is, the
event will show up in the platform’s event browser as an event of Normal severity, and if the map
icon representing the node whose interface was saturated is (color), that icon will remain (color).
Chapter 16, NerveCenter Severities 343

Default Severities
Default Severities
Table 16-2 lists the thirteen predefined NerveCenter severities.

Table 16-2. Predefined NerveCenter Severities

Severity Name Severity Level Severity Group Platform Name Color

Normal 0 Fault Normal Dark Green

VeryLow 1 Traffic Normal White

Low 2 Traffic Normal Yellow Green

Medium 3 Traffic Normal Light Aqua

High 4 Traffic Normal Cyan

VeryHigh 5 Traffic Normal Sky Blue

Saturated 6 Traffic Normal Magenta

Special 7 Fault Normal Burgundy

Inform 8 Fault Normal Royal Blue

Warning 9 Fault Warning Olive

Minor 10 Fault Minor Yellow

Major 11 Fault Major Orange

Critical 12 Fault Critical Red
344 Designing and Managing Behavior Models

Creating a New Severity
Creating a New Severity
If your behavior models require severities other than those supplied with NerveCenter, you can
create new severities.

� To create a new severity:

1. From the client’s Admin menu, choose Severity List.

The Severity List window is displayed. This window presents information about all the
severities currently defined in the NerveCenter database.

2. Select the New button in the Severity List window.

The New Severity window is displayed.

3. Enter a unique name for your severity in the Severity Name field.

Note The maximum length for severity names is 255 characters.

4. Enter a unique severity level, an integer in the range 0 to 255, in the Severity Level field.
Chapter 16, NerveCenter Severities 345

Creating a New Severity
Since the predefined severities use the levels 0 through 12, you should avoid those numbers
(unless you’ve modified the levels of the predefined severities).

In general, you should set up your severity levels so that the lowest priority severities have the
lowest levels and the highest priority severities have the highest levels. This is true because if
NerveCenter is set up to forward information about important alarm transitions to a network
management platform, NerveCenter forwards information about any transition whose
destination state has a severity whose level is greater than or equal to x, where x is defined
when NerveCenter is configured.

5. Enter the name of a severity group in the Severity Group field.

This group can be one of the preexisting groups—Fault or Traffic—or a user-defined group. In
either case, the severity group should indicate the type of problem that the severity reflects.

6. In the Platform Name field, enter the name of a severity on your network management
platform, or if you’re not using a network management platform, leave the value set to
“Unknown.”

When you enter a platform severity name, you establish a mapping between the NerveCenter
severity you’re defining and a severity on your network management platform. For example,
the predefined NerveCenter severity VeryHigh (traffic) is mapped by default to the platform
severity Normal. Given this situation, if NerveCenter informs a platform of a condition of
VeryHigh severity, the platform will indicate (in its event browser) that an event of Normal
severity has occurred.

7. Assign a color to the severity.

To assign this color, perform the following steps:

a. Select the Change Color button in the New Severity window.

The Color window is displayed.
346 Designing and Managing Behavior Models

Creating Custom Colors
b. Select the color box containing the color you want to assign to the severity.

c. Select the OK button in the Color window.

8. Select the Save button in the New Severity window.

Information about the new severity is saved to the NerveCenter database.

Creating Custom Colors
One attribute of a NerveCenter severity is it color. This color can be one of 48 predefined colors or
one of 16 custom (user-defined) colors. This section explains how to create a custom color that you
can use later in the definition of a severity.

� To create a custom color:

1. From the client’s Admin menu, choose Severity List.

The Severity List window is displayed.

2. Select the New button in the Severity List window.

The New Severity window is displayed.

3. Select the Change Color button in the New Severity window.

The Color window is displayed. This window shows NerveCenter’s predefined colors and any
previously defined custom colors.

4. Select the Define Custom Colors button in the Color window.

The Color window expands to include an area for creating custom colors.
Chapter 16, NerveCenter Severities 347

Creating Custom Colors
5. Specify the custom color you want to define by following the directions below. The color is
displayed in the Color|Solid color box.

a. Drag the crosshairs in the large colored area horizontally to establish the desired hue.

b. Drag the crosshairs vertically to establish the desired amount of saturation.

Moving the crosshairs up increases the amount of saturation, and moving them down
decreases the amount of saturation.

c. Drag the arrowhead to the right of the long, narrow colored area to establish the color’s
luminance.

Moving the arrowhead up increases the color’s luminance, and moving it down decreases
the color’s luminance.

Note You can also specify a color by entering values in the Hue, Sat, and Lum fields or the Red,
Green, and Blue fields.

6. Select the color square in the “Custom color” area to in which you want to save the new
custom color.

You can overwrite an existing custom color with a new one.

7. Select the Add to Custom Colors button.

The new color is saved and is available for assignment to a severity.
348 Designing and Managing Behavior Models

17

Importing and Exporting NerveCenter
Nodes and Objects
Unlike SerializeDB, with which you back up or restore an entire NerveCenter database, the
NerveCenter Client import and export features enable you to choose which NerveCenter behavior
models, objects, or nodes to import or export. Perhaps you have developed a behavior model that
you want to propagate across a multi-NerveCenter server environment. With the export feature, you
can selectively load one or more behavior models, (or individual objects) into another NerveCenter
server’s database.

In addition to directly exporting to another NerveCenter server’s database, you can also export
NerveCenter objects, nodes, and behavior models to a file. Using the import feature, you then
import such files into a NerveCenter database. For example, you might want to create a master
node list and then divide it into smaller lists to export to remote NerveCenter installations. Or,
perhaps, create a node list as a backup for quick recovery should the system go down.

For a complete list of the types of NerveCenter objects that you can export, see the section, More
about Exporting Objects on page 360.

NerveCenter ships with object and behavior model files (.mod) that include fixes and
vendor-specific behavior models. Because not everyone will want to use them, these objects and
models are not loaded into the NerveCenter database by default. With the import feature, you can
load these definitions into your NerveCenter database.
349

For complete information about exporting and importing nodes, objects, and behavior models see
the following sections:

Section Description

Exporting Behavior Models to
Other Servers on page 351

Describes how to export all the objects associated with a behavior model
from one NerveCenter database to another NerveCenter server.

Exporting Behavior Models to a
File on page 353

Explains how to export all the objects associated with a behavior model
from the NerveCenter database to a file.

More About Exporting Behavior
Models on page 354

Lists exactly what NerveCenter exports when you select a behavior
model.

Exporting NerveCenter Objects
and Nodes to Other Servers on
page 355

Describes how to export individual nodes and objects from one
NerveCenter database to another server.

Exporting NerveCenter Objects
and Nodes to a File on page 358

Explains how to export individual nodes and objects from the
NerveCenter database to a file.

More about Exporting Objects on
page 360

Lists the types of NerveCenter objects that you can export and what
actually gets exported.

Importing Node, Object, and
Behavior Model Files on
page 362

Explains how to import exported NerveCenter node, object and behavior
model files.
350 Designing and Managing Behavior Models

Exporting Behavior Models to Other Servers
Exporting Behavior Models to Other Servers
When you don’t want to export an entire NerveCenter database, NerveCenter enables you to pick
and choose those behavior models you want to export to other NerveCenter servers. For example,
for a multi-NerveCenter site, you might want to propagate particular behavior models across your
NerveCenter servers.

For more about what NerveCenter actually exports when you select a behavior model, see the
section More About Exporting Behavior Models on page 354.

To export behavior models to a file, see Exporting Behavior Models to a File on page 353. For
information about exporting a set of nodes or individual NerveCenter objects, see the following
sections:

� Exporting NerveCenter Objects and Nodes to Other Servers on page 355

� Exporting NerveCenter Objects and Nodes to a File on page 358

� To export behavior models to another NerveCenter Server:

1. Be sure that you are connected to the NerveCenter server(s) to which you want to export the
behavior model. (See Connecting to a Server on page 63 for more information.)

2. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

3. Select the alarm whose behavior model you want to export.

You can select any number of alarms at one time.

4. Right-click the selected alarm to bring up the alarm pop-up menu, and select Export Model.
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 351

Exporting Behavior Models to Other Servers
The Export Model/Object dialog is displayed.

5. Select the Export to Servers checkbox.

6. Select the Select Servers button.

The Server Selection dialog box is displayed.

a. Select the servers to which you’re exporting from the list.

b. Select the >> button. To select all servers to export to, select the All >> button.

The selected servers are added to the Selected Servers list.

You can remove servers from the Selected Servers list by selecting the object and then
selecting the << button.

Repeat this step for each server to which you want to export behavior models.

c. When finished, select OK to save your choices and close the Server Selection dialog.

7. Select the OK button

The behavior model(s) you’ve selected are exported to the selected NerveCenter server(s)’
database.
352 Designing and Managing Behavior Models

Exporting Behavior Models to a File
Exporting Behavior Models to a File
Situations can arise when you might want to export particular NerveCenter behavior model to a
file. Having one or more behavior models in a separate file can be useful when troubleshooting
NerveCenter or sharing behavior models between different NerveCenter sites.

For more about what NerveCenter actually exports when you select an behavior model, see the
section More About Exporting Behavior Models on page 354.

When you export one or more behavior models to a file, NerveCenter actually creates two files:

� A file with a .mod extension that contains the data required to re-create the behavior models.
This is the file that is imported later into the destination database.

� A text file (*.txt) that contains a textual description of the exported behavior models. Although
not required during an import, this file is important because it serves as documentation for the
corresponding .mod file and is the only method of knowing what models reside in the .mod file
prior to actually importing the models.

To export behavior models to a file, see Exporting Behavior Models to Other Servers on page 351.
For information about exporting a set of nodes or individual NerveCenter objects, see the following
sections:

� Exporting NerveCenter Objects and Nodes to Other Servers on page 355

� Exporting NerveCenter Objects and Nodes to a File on page 358

� To export behavior models to a file:

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

2. Select the alarm whose behavior model you want to export.

You can select any number of alarms at one time.
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 353

More About Exporting Behavior Models
3. Right-click the selected alarm to bring up the alarm pop-up menu, and select Export Model.

The Export Model/Object dialog is displayed.

4. In the File Name text field, type a filename without an extension or a pathname including a
filename without an extension.

NerveCenter will create two files. One will have the filename extension .mod and contain the
actual data for the behavior model you export. This is the file that you can import into another
NerveCenter database. The second file will have a .txt extension and contain a textual
description of the behavior model. This file is not used during an import operation, but it is the
only source of documentation for the .mod file contents.

If you specify a pathname in the File Name field, the file will be written to the directory you
specify. By default, NerveCenter places the file in the NerveCenter model directory.

5. Select the OK button.

More About Exporting Behavior Models
When you export a behavior model to another NerveCenter server or to a file, you export an alarm
(or alarms) and all of the objects associated with that alarm. These associated objects include:

� Any object that can fire a trigger that can cause a transition in the alarm, including polls,
masks, and other alarms.

� Any alarm that can be affected by a trigger fired by the alarm.

� Any properties used by any of the exported objects.

� Any property groups that contain any of the properties mentioned above.

� Any property groups used in AssignPropertyGroup() functions in polls, masks, and Perl
Subroutine expressions. Also, any property groups used in SetAttribute alarm actions in alarm
transitions. No properties are included from the group.

� All triggers fired by any exported object.

� The severities used by the exported alarms.

� Any Perl subroutines called by a Perl Subroutine action in an exported alarm.
354 Designing and Managing Behavior Models

Exporting NerveCenter Objects and Nodes to Other Servers
NerveCenter does not export the following objects with behavior models:

� Alarms that listen to Clear Trigger alarm actions.

� Objects that fire triggers used only in Clear Trigger alarm actions of the exported alarms.

� Polls, trap masks, and OpC masks that fire triggers used only in Fire Trigger alarm actions of
the exported alarms. (Perl subroutines in this situation are exported.)

� Perl subroutines that are not used as an action in one of the exported alarms.

� Action Router rules.

Exporting NerveCenter Objects and Nodes to Other Servers
When you don’t want to export an entire NerveCenter database, NerveCenter enables you to pick
and choose those nodes and objects you want to export to other NerveCenter servers. For example,
for a multi-NerveCenter site, you might want to propagate particular masks across your
NerveCenter servers.

Caution If you export nodes to a NerveCenter Server on another segment, any applicable
parenting information is exported with the nodes. However, this information might not
be valid for the new topology into which the node information is imported.

For a complete list of the object types and what NerveCenter actually exports when you select an
object, see the section More about Exporting Objects on page 360.

To export nodes and objects to a file, see Exporting NerveCenter Objects and Nodes to a File on
page 358. For information about exporting a behavior model—an alarm and all of the objects
associated with it—see the following sections:

� Exporting Behavior Models to Other Servers on page 351

� Exporting Behavior Models to a File on page 353
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 355

Exporting NerveCenter Objects and Nodes to Other Servers
� To export a set of nodes or objects to another NerveCenter Server:

1. Be sure that you are connected to the NerveCenter server(s) to which you want to export the
nodes or objects. (See Connecting to a Server on page 63 for more information.)

2. From the client’s Admin menu, choose Export Objects and Nodes.

The Export Objects and Nodes dialog is displayed.

3. To export:

� Objects—select the Export Objects to Selected Servers to choose servers for objects
you’re exporting.

� Nodes—select Export Nodes to Selected Servers to choose servers for nodes you’re
exporting.

Caution If you export nodes to a NerveCenter Server on another segment, any applicable
parenting information is exported with the nodes. However, this information might not
be valid for the new topology into which the node information is imported.

4. Select the Select Servers button.
356 Designing and Managing Behavior Models

Exporting NerveCenter Objects and Nodes to Other Servers
The Server Selection dialog is displayed.

a. Select the servers to which you’re exporting from the list.

b. Select the >> button. To select all servers to export to, select the All >> button.

The selected servers are added to the Selected Servers list.

You can remove servers from the Selected Servers list by selecting the object and then
selecting the << button.

Repeat this step for each server to which you want to export objects or nodes.

c. When finished, select OK to save your choices and close the Server Selection dialog.

5. Select Node or the type of object that you want to export from the Object Type radio set.

6. Create a list of nodes or objects to be exported. Creating a node or object list is similar to how
you selected the server(s) in step 4.

The selected objects or nodes are added to the Selected Objects list.

Repeat step 5 and step 6 for each type of object that you want to export.

7. Select the OK button.

The definition of the objects or nodes you’ve selected are exported to the selected NerveCenter
server(s)’ database.
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 357

Exporting NerveCenter Objects and Nodes to a File
Exporting NerveCenter Objects and Nodes to a File
Situations can arise when you might want to export particular NerveCenter nodes and objects to a
file. Having nodes or objects in a separate file can be useful when troubleshooting NerveCenter or
sharing nodes and objects between different NerveCenter sites.

For a complete list of the object types and what NerveCenter actually exports when you select an
object, see the section More about Exporting Objects on page 360.

When you export objects to a file, NerveCenter actually creates two files:

� A file with a .mod extension that contains the data required to re-create the objects. This is the
file that is imported later into the destination database.

� A text file (*.txt) that contains a textual description of the exported objects. Although not
required during an import, this file is important because it serves as documentation for the
corresponding .mod file and is the only method of knowing what models reside in the .mod file
prior to actually importing the models.

When you export nodes, NerveCenter creates a .node file that contains the data to re-create the
nodes.

To export nodes and objects to a NerveCenter database on another NerveCenter server, see
Exporting NerveCenter Objects and Nodes to Other Servers on page 355. For information about
exporting a behavior model—an alarm and all of the objects associated with it—see the following
sections:

� Exporting Behavior Models to Other Servers on page 351

� Exporting Behavior Models to a File on page 353
358 Designing and Managing Behavior Models

Exporting NerveCenter Objects and Nodes to a File
� To export a set of objects from NerveCenter:

1. From the client’s Admin menu, choose Export Objects and Nodes.

The Export Objects and Nodes dialog is displayed.

2. In the Objects File text field, type a filename for the serialized text file you want to export.
You can include the path in order to write the file to a certain location; by default, NerveCenter
places the file in the NerveCenter installation/model directory.

NerveCenter will create two files. One will have the filename extension .mod and contain the
actual data for the objects you export. This is the file that you can import into another
NerveCenter database. The second file will have a .txt extension and contain a textual
description of the objects. This file is not used during an import operation, but it is the only
source of documentation for the .mod file contents.

3. If you are exporting nodes, NerveCenter also creates a .node file by default in the model
directory. You must provide a name for this file in the Node File field. This file can later be
imported using the importutil.exe tool, which is described in the Managing Managing
NerveCenter guide and NerveCenter Administrator help.

4. Create a list of objects to be exported by following the directions below:

a. Select the radio button for the type of object you want to export, such as Property Group.

A list of objects of that type is displayed in the Available Objects list box.
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 359

More about Exporting Objects
b. Select the objects you want to export from the list.

c. Select the >> button. To select all objects for export, select the All >> button.

The selected objects are added to the Selected Objects list.

You can remove objects from the Selected Objects list by selecting the object and then
selecting the << button.

Repeat this step for each type of object that you want to export.

5. Select the OK button.

The definition of the objects you’ve selected are exported.

More about Exporting Objects
Using the client’s Export Objects and Nodes command (Admin menu), you can export the
following NerveCenter objects:

� Alarms

� Masks

� Properties

� Nodes

� Property Groups

� Polls

� OID to Groups

� OpC Masks

� Action Router Rules

� Severities
360 Designing and Managing Behavior Models

More about Exporting Objects
When you export an object to another server, NerveCenter actually exports not only that object, but
any objects that the object contains and some related objects. Table 17-1 lists the objects that
NerveCenter exports for each object type.

Table 17-1. Exporting Objects

Object Type Objects Exported

Alarm � The alarm

� The alarm’s property

� Any property groups that contain the alarm’s property

� The triggers that can affect the alarm

� The severities used by the alarm’s states

� Any Perl subroutines called by a Perl Subroutine action

Mask � The mask

� The triggers fired by the mask

OID to Group � The OID to property group mapping

� The property group referred to in the mapping

OpC Mask � The OpC mask

� The triggers fired by the OpC mask

Perl Subroutine � The Perl subroutine

Poll � The poll

� The poll’s property

� Any property groups that contain the poll’s property

� The triggers fired by the poll

Property � The property

� The property groups that contain the property

Property Group � The property group

� The properties in the property group

� Any property groups that are a superset of this property group

Rule � The Action Router rule

Severity � The severity
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 361

Importing Node, Object, and Behavior Model Files
Importing Node, Object, and Behavior Model Files
With the NerveCenter import feature, you can copy definitions of nodes, objects, or behavior
models from a file into another NerveCenter database.

Node files (.node) contain node definitions that have been exported to a file with the NerveCenter
export feature.

Object and behavior model files (.mod) contain definitions of objects and behavior models.
Object/model files come from one of two places:

� Object or behavior model files created using NerveCenter’s export feature.

� Models files shipped with NerveCenter. These files reside in NerveCenter’s model directory.

For more information about the behavior models shipped with NerveCenter, refer to the Behavior
Models Cookbook.

When you import a behavior model, you are also importing the objects associated with that model.
For every object/model file (.mod) there is a text file that contains descriptions of the objects in the
model. (This text file is the only documentation for the .mod file.)

Caution Any existing object with the same name as an imported object is overwritten.

Whatever the source of your node or object/model files, and regardless of whether they contain
individual objects or behavior models, you use the same procedure to import the contents of these
files.

Note You can also use the utility ImportUtil to import behavior models. This utility is discussed in
the book Managing Managing NerveCenter.

� To import the contents of a node or object/model file:

1. If the objects you are importing use base objects or attributes not in the current NerveCenter
MIB, add the necessary MIB definitions and recompile the NerveCenter MIB before
proceeding. Adding MIB definitions is described in the Managing NerveCenter guide and
NerveCenter Administrator help.

Note Any IP filters set in the NerveCenter Administrator also apply to nodes imported via a node
file. For more information, refer to Managing NerveCenter.

2. Move the node or object/model file to a location available to the destination NerveCenter
server.
362 Designing and Managing Behavior Models

Importing Node, Object, and Behavior Model Files
On Windows, if the destination NerveCenter server is running as a service under the system
account, copy the node or object/model file to a directory that physically resides on the
destination server, because a service under the system account does not have access to shared
files.

3. From the client’s Server menu, choose Import Objects and Nodes.

The Import Objects and Nodes dialog is displayed.

4. In the File Name field, enter the path of the node or object/model file.

Caution Any existing object with the same name as an imported object is overwritten.

If you don’t specify a pathname, NerveCenter looks in the server’s current working directory.
On Windows systems, this working directory is \Winnt\system32 if the server is being run as a
service, and the NerveCenter Bin directory otherwise. On UNIX systems, the server’s current
working directory is always the NerveCenter bin directory.

5. Select the OK button in the Import window.

NerveCenter imports the node or object/model file definitions into the new server’s database.

Note If you are missing objects in a behavior model you have imported, you will have to update
the NerveCenter compiled MIB file. Adding MIB definitions is described in the Managing
NerveCenter guide and NerveCenter Administrator help.
(For any models that you imported before you updated and recompiled the NerveCenter
MIB, the missing objects will not appear until the alarms they transition are instantiated or
until you re-import the model/objects.)
Chapter 17, Importing and Exporting NerveCenter Nodes and Objects 363

Importing Node, Object, and Behavior Model Files
364 Designing and Managing Behavior Models

A
Communications and Data
As a tool that comprehensively monitors and manages your network, NerveCenter uses a variety of
data transfers to gather, correlate, disseminate, and store information about network events. This
appendix outlines the general flow of data into, through, and out of NerveCenter in the course of its
operation.

NerveCenter’s primary sources of network information are SNMP traps and device responses to
NerveCenter polls. If configured appropriately, Open NerveCenter responds to trap and poll data by
forwarding it to your network management platform and to other NerveCenters. For example,
forwarded event data might ultimately land in a network management platform’s Event Categories
window or trigger an alarm transition in a central NerveCenter. Although this sequence may
happen quickly, the actual communication path from initial receipt of trap or poll data to the final
event message has many stages.

As Figure A-1 shows, a trace of the communication path initiated by a managed device’s SNMP
trap or poll response might look like this:

1. Traps are relayed directly to the NerveCenter Server if the platform and the server are running
on different machines. If they’re running on the same machine, traps are detected by the
operating system trap service or the management platform’s trap service and then forwarded to
the NerveCenter SNMP Trap process. The NerveCenter SNMP Trap process, in turn, forwards
the trap to Open NerveCenter.

2. Open NerveCenter trap masks filter incoming traps to see if they are of interest. If a trap is of
interest, an internal event, called a trigger, is generated and used by active alarms. Polls
evaluate the poll data returned by managed devices and also use triggers to pass data to alarms.

3. Open NerveCenter alarms correlate the traps and polls with other related data. For example, an
alarm might detect that this is the third trap of the same type from the same machine. The
alarm then takes any automated actions that were associated with this trap detection. For
example, it could issue a trouble ticket or change the device configuration.
365

Figure A-1. Data Flow

4. If an alarm transition contains the Inform action, the alarm sends a message to the Open
NerveCenter platform adapter process, which always resides on the same host as the network
management platform, and/or to any listed NerveCenters.

5. The platform adapter determines whether the message requires changing a symbol’s color on
the map, initiating an event message, or both. Messages to other NerveCenters forward the trap
data.

6. If color changes are required, the platform adapter sends a message to the Open NerveCenter
ncapp process, which in turn forwards instructions for color changes to the platform map with
an API.

NerveCenter

SNMP trap over UDP

Trap relayed with MS API

SNMP trap over UDP

SNMP trap

Alarm

Mask

Triggers

Event and symbol color messages

Platform adapter
Map instructions

Platform event

ncapp
Pseudo SNMP trap data

Internal platform

Event Categories windowPlatform map

Set status instructions

Poll

SNMP MIB data
requests and responses

over TCP sockets

using TCP sockets

via platform API

via platform API

over UDP

Devices

Platform or
OS trap service

or OV API

communication

SNMP trap over
TCP sockets

Mask
at another

NerveCenter

 SNMP
Trap Service
366 Designing and Managing Behavior Models

7. If an event is to be posted, the platform adapter uses an API to submit a data structure that
resembles an SNMP trap to the platform event facility, which decodes traps, associates text
messages with events, and posts them in the Event Categories window.

NerveCenter is a client/server application. The NerveCenter server acts as the hub for the data
transfers described in this appendix. As shown in the following illustration, event information
moves from managed device to NerveCenter server to management platform. But data also flows
between the server and other NerveCenter components in support of this flow.

Figure A-2. NerveCenter Components

The components shown in the preceding figure are defined in Table A-1:

Table A-1. NerveCenter Components

Component Definition

Client A user interface to the server. Provides facilities for the creation,
modification, maintenance, and monitoring of behavior models.

Web client A user interface to the server. Meant to be used only for monitoring a
network.

Administrator A user interface to the server. Provides facilities for NerveCenter
configuration.

 Node

SNMP
Agents

Events

Config Behavior Model

SNMP messages

 Platforms

Server

CLI ClientAdmin Mibcomp

Other

Informs

.mod files nervectr.mib Mib FilesDatabase

ODBC Driver

Servers
NerveCenter

 Source

Import/Export

 Platform

Web
Client

Settings
Appendix A, Communications and Data 367

Figure A-3 shows the utilities that install NerveCenter and assist in database management:

Figure A-3. Utilites for Installation and Database Management

Command line interface (CLI) Provides a subset of client commands for use from the command
line, programs, and scripts.

Platform/node source The network management platform that provides and monitors a list
of nodes to be monitored by the server.

Platforms/events The network management platforms that the server informs as an
alarm action.

Other NerveCenters Other NerveCenter servers that can accept Informs from the server,
allowing correlation across multiple domains.

SNMP agents Agents running on managed nodes that generate traps and respond to
NerveCenter polls.

ODBC Driver The NerveCenter server’s interface to its database.

Mibcomp Utility to compile and merge MIBs into the NerveCenter master
MIB.

Configuration Settings Repository for NerveCenter configuration parameter values—
nervecenter.xml configuration file (UNIX) and the Registry
(Windows).

Behavior model .mod files ASCII files containing exported behavior models and their
components.

Table A-1. NerveCenter Components

Component Definition

Setup DBWizard

File System

InstallDB SerializeDB

ODBC Driver

Database

Config
Settings
368 Designing and Managing Behavior Models

The utilities shown in Figure A-3 are defined in Table A-2.

Table A-2. NerveCenter Utilities

Utility Purpose

Setup Installs the NerveCenter file hierarchy and initializes NerveCenter
configuration settings.

DBWizard GUI for InstallDB.

InstallDB Command line utility for database creation, initialization, and
modification.

SerializeDB GUI-based utility for importing and exporting database
information.

ODBC The NerveCenter server’s interface to its database.
Appendix A, Communications and Data 369

370 Designing and Managing Behavior Models

B
Debugging a Behavior Model
This appendix provides information for resolving problems relating to NerveCenter behavior
models. Actions you can take to debug behavior models include:

� Verifying that the behavior model is enabled

� Checking properties and property groups

� Matching triggers and alarm transitions

� Auditing behavior models

For information on these topics, see the sections shown in the table below.

Section Description

Enabling a Behavior Model’s
Components on page 372

Briefly discusses enabling behavior model components.

Checking Properties and
Property Groups on page 372

Explains how to perform the necessary checks on behavior model
components.

Matching Triggers and Alarm
Transitions on page 374

Examines the identities of triggers and transitions, specifies the matching
rules, and provides examples of objects that match and objects that don’t
match.

Auditing Behavior Models on
page 380

Provides step-by-step instructions for how to perform a NerveCenter
audit.
371

Enabling a Behavior Model’s Components
Enabling a Behavior Model’s Components
If a behavior model is not working, the first thing to check is whether all of the model’s components
have been enabled. For a model to be functional, all polls, masks, OpC masks, and alarms must be
enabled.

To determine whether a given object is enabled, open the Poll List, Mask List, OpC Mask List, or
Alarm Definition List window, and note the Enabled status of the object in which you’re interested.
For information of how to enable an object, see the section Enabling Objects on page 328.

Checking Properties and Property Groups
If all of the components of a behavior model are enabled and the behavior model still does not
work, you should make sure that your polls’ properties, your alarms’ properties, and your nodes’
property groups are set up correctly. The upcoming sections explain how to perform these checks.

Checking a Poll’s Property

Part of NerveCenter’s smart polling feature is that NerveCenter does not send a poll to a node
unless the poll’s property is in the node’s property group.

� To make sure that your poll passes this test:

1. Open the Poll List window, and note your poll’s property.

If your poll’s property is set to NO_PROP, you can stop the test here because a poll whose
property is NO_PROP always passes this test.

2. Open the Node List window, locate a node you are trying to poll, and note this node’s property
group.

3. Open the Property Group List window, select the property group you noted in step 2, and see
whether the poll’s property appears in the property group’s list of properties.

If your poll’s property is not in the node’s property group, you must change your poll’s property,
change the node’s property group, or add a property to the current property group.
372 Designing and Managing Behavior Models

Checking Properties and Property Groups
Checking a Poll’s Poll Condition

Another part of NerveCenter’s smart polling feature is this: if your poll’s poll condition refers to a
MIB base object, NerveCenter does not send the poll to a node unless the base object referred to in
the poll condition is in the node’s property group.

� To make sure that your poll passes this test:

1. Open the Poll List window, and note your poll’s base object.

If your poll’s base object is set to NO_OBJECT, you can stop the test here because a poll
whose base object is NO_OBJECT always passes this test.

2. Open the Node List window, locate a node you are trying to poll, and note this node’s property
group.

3. Open the Property Group List window, select the property group you noted in step 2, and see
whether the poll’s base object appears in the property group’s list of properties.

If your poll’s base object is not in the node’s property group, you must change the node’s property
group or add a property to the current property group.

Checking an Alarm’s Property

Let’s assume that NerveCenter is polling a node, that NerveCenter is firing a trigger as a result of
the poll, and that you have an enabled alarm whose one transition out of the Ground state has the
same name as this trigger. Even in this case, NerveCenter does not create an alarm instance unless
the alarm’s property is in the node’s property group.

� To make sure that your alarm passes this test:

1. Open the Alarm Definition List window, and note your alarm’s property.

If your alarm’s property is set to NO_PROP, you can stop the test here because an alarm whose
property is NO_PROP always passes this test.

2. Open the Node List window, locate a node you are trying to poll, and note this node’s property
group.

3. Open the Property Group List window, select the property group you noted in step 2, and see
whether the alarm’s property appears in the property group’s list of properties.

If your alarm’s property is not in the node’s property group, you must change your alarm’s property,
change the node’s property group, or add a property to the current property group.
Appendix B, Debugging a Behavior Model 373

Matching Triggers and Alarm Transitions
Matching Triggers and Alarm Transitions
When a trigger is fired, NerveCenter must decide whether that trigger should cause a state
transition in an active alarm instance or cause a new alarm instance to be created. What conditions
must a trigger and transition meet before one of these actions takes place?

� A transition whose name matches the name of the trigger must be pending.

In an active alarm, a transition is pending if its origin state is the alarm instance’s current state.
A transition is also considered pending if its origin state is Ground. When the second type of
transition occurs, a new alarm instance is instantiated.

� The trigger’s identity must match the transition’s identity.

Triggers have four-part identities. These identities include a name, a subobject, a node, and
sometimes a property. Transitions’ identities have the same four parts, plus a fifth part, scope.
NerveCenter uses matching rules to compare a trigger’s identity to the identity of each pending
alarm transition. Each pair of names, subobjects, nodes, and properties must pass a comparison
test before a transition takes place.

This section describes the identities of triggers and transitions, specifies the matching rules, and
provides examples of objects that match and objects that don’t match. See the subsections listed
below:

� Identities of Triggers and Transitions on page 374

� Rules for Matching on page 376

� Examples of Matching Triggers and Transitions on page 377

Identities of Triggers and Transitions

The components of a trigger’s identity may be supplied by you, the designer, or by NerveCenter,
depending on how the trigger is generated. On the other hand, a transition’s identity is inherited
from an active alarm instance or, if the transition’s origin state is Ground, from an alarm definition.
The remainder of this section discusses how the components of a trigger or transition’s identity are
given values.

� Name—Any string.

� Trigger—You give a trigger its name when you define the poll or mask that will fire the
trigger, when you make a call to the FireTrigger() function, or when you use the Fire
Trigger alarm action. NerveCenter assigns reserved names to built-in triggers.

� Transition—You establish a transition's name when you define the transition, in the
course of drawing an alarm's state diagram.
374 Designing and Managing Behavior Models

Matching Triggers and Alarm Transitions
� Subobject—Usually the MIB base object and instance (connected with a period) associated
with the condition that prompted the trigger.

� Trigger —The subobject of a trigger fired by a poll is taken from the OID used in the
SNMP GetRequest that caused the trigger to be fired. Similarly, the subobject of a trigger
fired by a trap mask is taken from the OID in the first variable binding in the trap that
caused the trigger to be fired. Built-in triggers are assigned a subobject of $ANY.

For triggers fired as a result of a call to the Fire Trigger () function or by a Fire Trigger
alarm action, you specify the subobject when you call the function or define the alarm
action.

� Transition — In a subobject-scope alarm instance, a transition inherits its subobject from
the alarm instance. For example, if an alarm instance tracks ifEntry.2 on a given node, all
its transitions do also. If the transition would be an alarm instance's first, it has no
subobject. Transitions in node- and enterprise-scope alarms do not have subobjects either.

� Node — The name of a managed node.

� The node attribute of a trigger fired by a poll or a mask is assigned the name of the node
on which the condition of interest was detected. For triggers fired as a result of a call to the
Fire Trigger () function or by a Fire Trigger alarm action, you specify the node when you
call the function or define the alarm action.

� A transition inherits its node from its alarm instance. For example, if an alarm instance
tracks node router1, all of its transitions do also. If the transition would be an alarm
instance's first, the transition does not have a node. In addition, transitions in enterprise
scope alarms do not have nodes.

� Property — The name of a property or empty.

� Trigger — You specify the property of a trigger fired by a Fire Trigger alarm action when
you define the action. Triggers from other sources do not have properties.

� Transition — A transition inherits its property from the associated alarm definition.

� Scope — Subobject, Node, Instance, or Enterprise

� Trigger — A trigger does not have a scope.

� Transition — A transition inherits its scope from the associated alarm definition.
Appendix B, Debugging a Behavior Model 375

Matching Triggers and Alarm Transitions
Rules for Matching

A trigger causes an alarm transition if the identities of the trigger and the transition match—that is,
if their names, subobjects, nodes, and properties all pass comparison tests. The four comparison
tests corresponding to the four parts of a trigger's identity are discussed in the upcoming
subsections. The trigger must pass all four tests before it can prompt a transition.

Name Rule

A trigger's name must match the transition's name exactly.

Subobject Rule

A trigger's subobject matches a transition's subobject when any of the following statements is true:

� The transition's scope is Enterprise.

� The transition's scope is Node.

� Both the trigger's and the transition's subobjects are zero instance (baseObject.0) or are empty.

� The trigger's subobject matches the transition's subobject exactly.

� The transition’s scope is instance and the instances match.

� The trigger's subobject is a wildcard ($ANY), and the transition's origin state is not Ground.

� The transition has subobject scope, the base objects are the same in the subobject for the
trigger and transition, the instance in the trigger's subobject is a wildcard ($ON), and the
transition's origin state is not Ground.

� The transition has instance scope, the instance in the trigger’s subobject is a wildcard ($ON),
and the transition is not from ground state.

� The instances in the trigger's subobject and transition's subobject match, and one of the base
objects is an extension of the other.

Here's an example of one base object extending another. MIB-II defines ifEntry, a row of data
in a table of information about an interface. You access a particular instance of ifEntry using
the index ifIndex. Cisco extends this interface table by defining a local interface table, which
contains many additional attributes for each interface. The rows in this table are accessed using
the same index used to access the rows in the MIB-II interface table.

If the transition's origin state is Ground -- that is, a new alarm instance is being created -- the
following statement must also be true:

� The trigger's subobject is not $ANY or $NULL and does not contain $ON.

The trigger can have an empty subobject.
376 Designing and Managing Behavior Models

Matching Triggers and Alarm Transitions
Node Rule

A trigger’s node matches a transition’s node when any of the following statements is true:

� The transition’s scope is Enterprise.

� The trigger’s node matches the transition’s node exactly.

� The trigger’s node is $ANY, and the transition’s origin state is not Ground.

If the transition would create a new alarm instance and therefore has no associated node, the follow
statement must also be true:

� The trigger’s node is not $ANY.

Property Rule

A trigger and transition pass the property test when all of the following conditions are met:

� For transitions of subobject or node scope, the transition’s property is contained in the property
group of the trigger’s node, or the transition’s property is NO_PROP.

� For transitions of subobject or node scope, the trigger’s property (if it has one) is contained in
the property group assigned to the trigger’s node.

� For transitions of enterprise scope, the trigger’s property (if it has one) must match the
transition’s property.

Examples of Matching Triggers and Transitions

This section presents a number of examples of triggers and transitions that do and do not match.

Example 1

A trigger named highLoad with the subobject system.0 and the node hp124 would prompt the
following transitions:

� Name: highLoad
Scope: Subobject
Subobject: ip.0
Node: hp124
Property: hpws, which is contained in hp124’s property group

� Name: highLoad
Scope: Subobject
Subobject: Unassigned (transition from Ground)
Node: Unassigned (transition from Ground)
Property: NO_PROP
Appendix B, Debugging a Behavior Model 377

Matching Triggers and Alarm Transitions
� Name: highLoad
Scope: Node
Subobject: Irrelevant
Node: hp124
Property: hpws, which is contained in hp124’s property group

The highLoad trigger would not prompt the following transition:

� Name: highLoad
Scope: Subobject
Subobject: ifEntry.2
Node: hp124
Property: hpws, which is contained in hp124’s property group

The trigger and transition fail the subobject rule.

Example 2

A trigger named lowSpace with the subobject $ANY, the node hp124, and the property includeMe
(which is contained in hp124’s property group) would prompt the following transitions:

� Name: lowSpace
Scope: Subobject
Subobject: ifEntry.2
Node: hp124
Property: includeMeToo, which is contained in hp124’s property group

� Name: lowSpace
Scope: Node
Subobject: Irrelevant
Node: hp124
Property: NO_PROP

� Name: lowSpace
Scope: Subobject
Subobject: system.0
Node: hp124
Property: NO_PROP

The lowSpace trigger would not prompt the following transitions:

� Name: lowSpace
Scope: Enterprise
Subobject: Irrelevant
Node: Irrelevant
Property: hpws, which is contained in hp124’s property group

The trigger and transition fail the property rule.
378 Designing and Managing Behavior Models

Matching Triggers and Alarm Transitions
� Name: lowSpace
Scope: Subobject
Subobject: ifEntry.2
Node: hp125
Property: includeMe

The trigger and transition fail the node rule.

� Name: lowSpace
Scope: Subobject
Subobject: Unassigned (transition from Ground)
Node: Unassigned (transition from Ground)
Property: NO_PROP

The trigger and transition fail the subobject rule.

Example 3

A trigger named lowSpace with the subobject $NULL, the node $ANY, and the property
NO_PROP would prompt the following transitions:

� Name: lowspace
Scope: Node
Subobject: Irrelevant
Node: hp125
Property: includeMe

� Name: lowspace
Scope: Enterprise
Subobject: Irrelevant
Node: Irrelevant
Property: dontIncludeMe

The lowSpace trigger would not prompt the following transitions:

� Name: lowspace
Scope: Subobject
Subobject: ifEntry.2
Node: hp125
Property: includeMe

The trigger and transition fail the subobject rule.

� Name: lowspace
Scope: Subobject
Subobject: Any string at all, including the empty string
Node: Any node at all
Property: NO_PROP

The trigger and transition fail the subobject rule.
Appendix B, Debugging a Behavior Model 379

Auditing Behavior Models
Auditing Behavior Models
NerveCenter includes an auditing feature that looks for:

� Alarm transitions for which there are no corresponding triggers

� Triggers that are fired by a poll or a mask and are not used in alarms

� Alarms with states that are unreachable

You should audit your database periodically to ensure that you don’t have extraneous objects in
your database and that alarms you’re currently using don’t have unreachable states or unusable
transitions.

� To perform an audit:

1. Choose Audit from the client’s Admin menu.

The Audit window appears.

2. Check one or more of the checkboxes above the text area.

Checking the Alarm Triggers checkbox indicates that you want to see information about
alarm transitions for which there are no corresponding triggers.

Checking the Mask /Poll Triggers checkbox indicates that you want to see information about
polls and masks that fire triggers that are not used by any currently defined alarm.

Checking the Alarm States checkbox indicates that you want to see information about alarms
that contain states that are unreachable.

3. Select the Run Audit button.
380 Designing and Managing Behavior Models

Auditing Behavior Models
The results of the audit are written to the text area in the Audit window and to the file
audit.txt in the Log (Windows) or userfiles/logs (UNIX) directory.

The other buttons in the Audit window have the following functions:

� Clear clears the contents of the text area in the Audit window.

� Clear Audit File clears the contents of the file audit.txt.

� View Audit File displays the contents of the file audit.txt in the text area of the Audit
window.
Appendix B, Debugging a Behavior Model 381

Auditing Behavior Models
382 Designing and Managing Behavior Models

C
Error Messages
This appendix explains the error and information messages that you might encounter while using
NerveCenter. Possible causes and solutions for the errors are included.

This appendix includes the following sections:

Table C-1. Sections Included in this Appendix

Section Description

User Interface Messages on
page 384

Explains where error messages appear as well as the different types of
error messages.

Error Messages on page 386 Lists the error messages and possible solutions.
383

User Interface Messages
User Interface Messages
All NerveCenter error messages are written to the Event Log. To view messages in the Event Log:

� In Windows: Run the Event Viewer and display the Application log. Each error message is
listed as a line in the log.

� In UNIX: Read the ASCII file /var/adm/messages with a text editor or a command such as
“more.”

Each error description is formatted in the following way:

Category error_message_number: message: [code_number]

Each message is assigned a category, which has a corresponding number. The line listed in the log
uses a number to indicate a category, as follows:11

Table C-2. Error Message Categories

Number Category

1 NC Server Manager

2 NC Alarm Manager

3 NC Trap Manager

4 NC Poll Manager

5 NC Action Manager

6 NC Protocol Manager

7 NC PA Resync Manager

8 NC Service

9 NC Inform NerveCenter Manager

10 NC OpC Manager

11 NC LogToFile Manager

12 NC FlatFile Manager

13 NC Alarm Filter Manager

14 NC Deserialize Manager

15 NC LogtoDB Manager

16 NC DB Manager

17 NC Inform OV
384 Designing and Managing Behavior Models

User Interface Messages
The error message number indicates the type of error. The error message numbers are organized as
follows:

The error messages are explained in the following sections:

� Action Manager Error Messages on page 387

� Alarm Filter Manager Error Messages on page 391

� Deserialize Manager Error Messages on page 391

� Flatfile Error Messages on page 391

� Inform NerveCenter Error Messages on page 392

� Inform OV Error Messages on page 392

� LogToDatabase Manager Error Messages on page 394

� LogToFile Manager Error Messages on page 395

� OpC Manager Error Messages on page 395

� Poll Manager Error Messages on page 395

� Protocol Manager Error Messages on page 396

� PA Resync Manager Error Messages on page 397

� Server Manager Error Messages on page 399

� Trap Manager Error Messages on page 403

� on page 404

� OpenView Configuration Error Messages (UNIX) on page 407

Table C-3. Error Message Numbers

Number Range Type of Error

0-999 Users should call customer support.

1000-1999 User can resolve the problem.

2000-2999 User is warned of an event.

3000-3999 User is given an informational message.
Appendix C, Error Messages 385

Error Messages
Error Messages
The following charts list particular error messages that may occur when operating NerveCenter.
For an explanation of what types of error messages exist and where error messages appear, see the
section User Interface Messages on page 384.

The messages include:

� Action Manager Error Messages on page 387

� Alarm Filter Manager Error Messages on page 391

� Deserialize Manager Error Messages on page 391

� Flatfile Error Messages on page 391

� Inform NerveCenter Error Messages on page 392

� Inform OV Error Messages on page 392

� LogToDatabase Manager Error Messages on page 394

� LogToFile Manager Error Messages on page 395

� OpC Manager Error Messages on page 395

� Poll Manager Error Messages on page 395

� Protocol Manager Error Messages on page 396

� PA Resync Manager Error Messages on page 397

� Server Manager Error Messages on page 399

� Trap Manager Error Messages on page 403

� on page 404

� OpenView Configuration Error Messages (UNIX) on page 407
386 Designing and Managing Behavior Models

Error Messages
Action Manager Error Messages

Following is a list of Action Manager error messages.

Table C-4. Action Manager Error Messages

Error Number Error Resolution

1 Action Manager Initialization failed with
send trap socket

N/A

3 Send trap action: CreateTrapRequest failed N/A

4 Send trap action: Send trap failed N/A

500 Socket Error: value N/A

501 <system call> failed while launching
Application handler : <error message>

N/A

1001 Action Manager connect to database failed Check NerveCenter database. Check ODBC
connection string.

1002 InitializePlatformSocket failed for value Use the Administrator to check the
configuration settings for NetNodeNotify.

1004 Can’t open database Check NerveCenter database. Check ODBC
connection string.

1005 No connection string for Log to Database
action

Check ODBC connection string.

1006 Reconfiguration: InitializePlatformSocket
failed for value

Check Notify page in NC Admin.

1010 Log to Event View error:
RegisterEventSource for value failed with
error code value

Check system configuration.

1011 Log to Event View error: ReportEvent
failed with error code value

Check system configuration.

1012 Socket Creation Failed in InitSmtpSocket
With Error = value

Check socket resource on the computer.

1013 Protocol Bind Failed in InitSmtpSocket
With Error = value

Check TCP/IP configuration.

1014 Connect to SMTP Host Failed in
InitSmtpSocket With Error=value

Use the Administrator to check the
configuration settings for SMTP host name.

1015 Ioctlsocket Failed (Setting Non-Blocking
Mode) in InitSmtpSocket With Error=value

Check TCP/IP configuration.

1016 Send Packet Failed in SendSmtpPacket
With Error= value

Check SMTP server.
Appendix C, Error Messages 387

Error Messages
1017 Receive Packet Failed in RecvSmtpPacket
for %1 With Error= value

Check SMTP server.

1018 Received Unexpected Response= value in
RecvSmtpPacket

Check SMTP server.

1019 Log to Database error: Database connection
not open

Check NerveCenter database. Check SQL
Server.

1020 Log to Database error: can not open log
table

Check NC_Log table in NerveCenter
database.

1021 Log to Database exception: value Check NerveCenter database. Check SQL
Server. Check NC_Log table in NerveCenter
database.

1022 Logging to a File error: No filename
presented to Log To File action.

Make sure there is a file name associated with
LogToFile action for alarm transitions.

1023 Logging to a File error: Unable to Write
LogFile: value Error Code = value.

Check security on file system. Make sure the
file is writable.

1024 Logging to a File error: Unable to Create
LogFile: value Error Code = value.

Check security on file system. Make sure the
file is writable.

1025 Logging to a File error: Unable to Seek
EOF for LogFile: value Error Code = value

Check security on file system. Make sure the
file is writable.

1026 Logging to a File error: Unable to Truncate
LogFile.

Delete the file or repair the file format.

1027 Could Not Logoff from MAPI value,
Error=value

Check MAPI service in the system.

1028 Could Not Load MAPI32.DLL. Search mapi32.dll in the system and ensure
sure it is in the system path.

1029 Could Not Get MAPILogon Address. Check mapi32.dll in the system and ensure it
is a good version.

1030 Could Not Get MAPILogoff Address. Check mapi32.dll in the system and ensure it
is a good version.

1031 Could Not Get MAPISendMail Address. Check mapi32.dll in the system and ensure it
is a good version.

1032 Could Not Logon to MAPI value,
Error=value.

Check MAPI configuration and ensure to have
created the profile.

1033 Could Not SendMail to MAPI value,
Error=value.

Check MAPI configuration and ensure to have
created the profile.

1034 Paging action error: Dial failed. Check modem configuration.

Table C-4. Action Manager Error Messages (continued)

Error Number Error Resolution
388 Designing and Managing Behavior Models

Error Messages
1035 Running an NT Command error: No
Command Presented to Run Command.

Make sure there is a command associated with
all Windows Command actions specified for
alarm transitions.

1036 Running an NT Command error: Command
value Completed with ReturnCode value

Check command line.

1037 Command action value failed : Application
handler value was killed

NCServer will bring it up for the next
Command action

1038 Command action <action> failed : value If error says "Too many open files" close some
open files. If error says "fork failure" close
some applications.

1039 Unable to launch Application handler:
value

If error says "Too many open files" close some
open files. If error says "fork failure" close
some applications.

1040 Perl subroutine value failed: message

1500 The connection to value was closed

1505 value. The address is already in use Make sure you are not running two instances
of the same application on the same machine.

1506 value. The connection was aborted due to
timeout or other failure

Make sure the physical network connections
are present.

1507 value. The attempt to connect was refused Make sure the server is running on the remote
host.

1508 value. The connection was reset by the
remote side

Make sure the remote peer is up and running.

1509 value. A destination address is required A destination address or host name is
required.

1510 value. The remote host cannot be reached Make sure the routers are working properly.

1511 value. Too many open files Close any open files.

1512 value. The network subsystem is down Reboot the machine.

1513 value. The network dropped the connection Make sure the peer is running and the network
connections are working.

1514 value. No buffer space is available This might be because you are running several
applications, or an application is not releasing
resources.

1515 value. The network cannot be reached from
this host at this time

Make sure the routers are functioning
properly.

Table C-4. Action Manager Error Messages (continued)

Error Number Error Resolution
Appendix C, Error Messages 389

Error Messages
1516 value. Attempt to connect timed out without
establishing a connection

Make sure the machine is running and on the
network.

1517 value. The host cannot be found Make sure you can ping the host. Check your
hosts file or DNS server.

1518 value. The network subsystem is
unavailable

Make sure the network services are started on
machine.

1519 value. Invalid host name specified for
destination

The host name cannot be resolved to an IP
address. Enter the name to the hosts file or
DNS server.

1520 value. The specified address in not
available

Make sure the host name is not zero—try
pinging the host.

2001 Command line too long: value Check the Windows Command Action.
Command line exceeds maximum allowed
length of 2048 characters.

2002 Send trap action failed for alarm alarm
name due to the following reason: string

Check the source or destination host name.
Check the enterprise. If this action was not
caused by a trap, it will fail if the enterprise is
$P. Check to see that the varbinds are legal for
the currently loaded MIB.

2003 Tapi initialize failed, paging will not work Check the comm port/modem configuration
and check the tapi32.dll version.

2004 Empty host for SMTP mail If SMTP actions are used, use the
Administrator to enter the SMTP mail host
name.

2005 Empty profile for MAPI, MS Mail will not
work

If MS mail actions are used, use the
Administrator to enter the SMTP mail host
name.

2006 Fire Trigger Action error: Invalid node
name: value

A node name was specified directly in an
action and that node doesn't exist in the
system.

2007 Fire Trigger Action error: Invalid property
name: value

A property was specified directly in an action
and that property doesn't exist in the system.

2008 Fire Trigger Action error: Invalid
subobject: value

A subobject was specified directly in an action
and that subobject doesn't exist in the system.

2010 Error Sending SMTP Mail. Value messages
may have been lost.

Table C-4. Action Manager Error Messages (continued)

Error Number Error Resolution
390 Designing and Managing Behavior Models

Error Messages
Alarm Filter Manager Error Messages

Following is a list of Alarm Filter Manager error messages.

Deserialize Manager Error Messages

Following is a list of Alarm Filter Manager error messages.

Flatfile Error Messages

Following is a list of Flatfile Manager error messages.

Table C-5. Alarm Filter Manager Error Messages

Error Number Error Resolution

1 Lookup failed on linenumber value in File
value.

3001 Alarm Filter Manager Initialization
successfully finished

Table C-6. Deserialize Manager Error Messages

Error Number Error Resolution

1 Lookup failed on linenumber value in File
value.

3001 Deserialize Thread Manager Initialization
successfully finished

Table C-7. Flatfile Manager Error Messages

Error Number Error Resolution

1 Lookup failed on linenumber value in File
value.

3001 Flat File Initialization successfully finished
Appendix C, Error Messages 391

Error Messages
Inform NerveCenter Error Messages

Following is a list of Inform NerveCenter Manager error messages.

Inform OV Error Messages

Following is a list of Inform OV Manager error messages.

Table C-8. Inform NerveCenter Manager Error Messages

Error Number Error Resolution

1 Lookup failed on linenumber value in File
value.

3001 InformNC Manager Initialization
successfully finished

Table C-9. Inform OV Manager Error Messages

Error Number Error Resolution

2 ReceiveHandShakeResponse FALSE byte
not correct.

N/A

500 Socket Error: value. N/A

501 <system call> failed while launching
Application handler : <error message>.

N/A

1002 InitializePlatformSocket failed for value. Use the Administrator to check the
configuration settings for NetNodeNotify.

1003 No platform host for InformOV. Use the Administrator to check the
configuration settings for NetNodeNotify.

1006 Reconfiguration: InitializePlatformSocket
failed for value.

Check Notify page in the Administrator.

1007 CInformOVEventSocket::Init() failed with
invalid operation: value.

Use the Administrator to check the
configuration settings for NetNodeNotify.

1039 Unable to launch Application handler:
value.

If error says "Too many open files" close some
open files. If error says "fork failure" close
some applications.

1040 Perl subroutine value failed: message.

1500 The connection to value was closed.

1505 value. The address is already in use. Make sure you are not running two instances
of the same application on the same machine.

1506 value. The connection was aborted due to
timeout or other failure.

Make sure the physical network connections
are present.
392 Designing and Managing Behavior Models

Error Messages
1507 value. The attempt to connect was refused. Make sure the server is running on the remote
host.

1508 value. The connection was reset by the
remote side.

Make sure the remote peer is up and running.

1509 value. A destination address is required. A destination address or host name is
required.

1510 value. The remote host cannot be reached. Make sure the routers are working properly.

1511 value. Too many open files. Close any open files.

1512 value. The network subsystem is down. Reboot the machine.

1513 value. The network dropped the connection. Make sure the peer is running and the network
connections are working.

1514 value. No buffer space is available. This might be because you are running several
applications, or an application is not releasing
resources.

1515 value. The network cannot be reached from
this host at this time.

Make sure the routers are functioning
properly.

1516 value. Attempt to connect timed out without
establishing a connection.

Make sure the machine is running and on the
network.

1517 value. The host cannot be found. Make sure you can ping the host. Check your
hosts file or DNS server.

1518 value. The network subsystem is
unavailable.

Make sure the network services are started on
machine.

1519 value. Invalid host name specified for
destination.

The host name cannot be resolved to an IP
address. Enter the name to the hosts file or
DNS server.

1520 value. The specified address in not
available.

Make sure the host name is not zero—try
pinging the host.

2001 Command line too long: value. Check the Windows Command Action.
Command line exceeds maximum allowed
length of 2048 characters.

2006 Fire Trigger Action error: Invalid node
name: value.

A node name was specified directly in an
action and that node doesn't exist in the
system.

2007 Fire Trigger Action error: Invalid property
name: value.

A property was specified directly in an action
and that property doesn't exist in the system.

Table C-9. Inform OV Manager Error Messages (continued)

Error Number Error Resolution
Appendix C, Error Messages 393

Error Messages
LogToDatabase Manager Error Messages

Following is a list of Log to Database Manager error messages.

2008 Fire Trigger Action error: Invalid
subobject: value.

A subobject was specified directly in an action
and that subobject doesn’t exist in the system.

2009 Inform OV send Packet Failed for platform
socket value.

3001 Inform OV Manager Initialization
successfully finished.

3002 CInformOVEventSocket::OnClose with
code value.

Table C-9. Inform OV Manager Error Messages (continued)

Error Number Error Resolution

Table C-10. Log to Database Manager Error Messages

Error Number Error Resolution

1002 Initialization failed. Check WriteBuiltInTriggers.

1100 Unknown database exception. Check NerveCenter database. Log segment
might be full.

1101 Failed to connect to database. Check NerveCenter database. Check ODBC
connection string.

1102 Failed to connect to database. Check NerveCenter database. Check ODBC
connection string.

1103 Version table validation failed. NC_Version
table doesn’t exist in database.

1104 Write to database failed. Log segment might be full or the database
might have gone down.

1203 Can’t enable discovery model. Check the alarm table and the state of alarms
(off or on).

3001 Database Thread Initialization successfully
finished.

3002 The database state has changed. Either it
has gone down or come up.
394 Designing and Managing Behavior Models

Error Messages
LogToFile Manager Error Messages

Following is a list of Log to File Manager error messages.

OpC Manager Error Messages

Following is a list of OpC Manager error messages.

Poll Manager Error Messages

Following is a list of Poll Manager error messages.

Table C-11. Log to File Manager Error Messages

Error Number Error Resolution

1 Lookup failed on linenumber value in File
value.

3001 LogToFile Manager Initialization
successfully finished

Table C-12. Inform OpC Manager Error Messages

Error Number Error Resolution

1 Lookup failed on linenumber value in File
value.

3001 OpC Manager Initialization successfully
finished

Table C-13. Poll Manager Error Messages

Error Number Error

3001 Poll Manager Initialization successfully finished

3002 CPollManagerWnd:OnPollOnOff, PreCompild of PollEvent with Poll Id %ld failed
Appendix C, Error Messages 395

Error Messages
Protocol Manager Error Messages

Following is a list of Protocol Manager error messages.

Table C-14. Protocol Manager Error Messages

Error Number Error Resolution

1 Building copy of node list failed. N/A

2 Building copy of poll property list failed. N/A

3 I.nitialization of protocol methods failed N/A

4 Initialization of ping socket failed. N/A

5 Creation of SNMP socket failed, socket
error code: %d

N/A

6 Error in ping socket: %s N/A

7 Error in ping socket: create socket failed. N/A

8 Error in ping socket: async select failed. N/A

1000 Looking for the %s key in the configuration
settings.

Use the Administrator to enter the SNMP
values in the configuration settings.

1001 Ncuser user ID is not found. Add ncuser user ID to your system.

3000 Initialization successfully finished. N/A

3001 Invalid value in configuration settings for
SNMP retry interval, using default of 10
seconds.

Use the Administrator to enter a value for the
SNMP retry interval.

3002 Invalid value in configuration settings for
number of SNMP retries, using default of 3
retries.

Use the Administrator to enter a value for the
SNMP retries.

3003 Invalid value in configuration settings for
default SNMP port, using default of 161.

Use the Administrator to enter a value for the
default SNMP port number.
396 Designing and Managing Behavior Models

Error Messages
PA Resync Manager Error Messages

Following is a list of PA Resync Manager error messages.

Table C-15. PA Resync Manager Error Messages

Error Number Error Resolution

1 Error getting local host name for encoding
resync request, socket error code: %d

N/A

2 Encoding resync request failed N/A

3 Sending resync request failed with zero
bytes sent

N/A

4 Sending resync request failed: %s N/A

5 Memory allocation error, trying to notify of
connection status

N/A

6 Memory allocation error, creating node list N/A

7 Memory allocation error, creating a resync
node

N/A

8 Parent status not sent during resync

10 Parents not computed during resync with
map host. Check OVPA. OVPA database
must have nc host node.

500 Socket Error: (%d)

1000 Error looking for the %s key in the
NerveCenter configuration settings

Use the Administrator to enter configuration
settings.

1001 Attempt to connect to %s on port %d failed:
%s

Make sure the platform host is up and running
and that the name exists in the hosts file.

1002 Resync connection attempt failed: %d Make sure the platform host is up and the
platform adapter is running.

1500 The connection to % was closed

1501 Send failed with zero bytes sent

1505 %s. The address is already in use Make sure you are not running two instances
of the same application on the same machine.

1506 %s. The connection was aborted due to
timeout or other failure

Make sure the physical network connections
are present.

1507 %s. The attempt to connect was refused Make sure the server is running on the remote
host.

1508 %s. The connection was reset by the remote
side

Make sure the remote peer is up and running.
Appendix C, Error Messages 397

Error Messages
1509 %s. A destination address is required A destination address or host name is
required.

1510 %s. The remote host cannot be reached Make sure the routers are working properly.

1511 %s. Too many open files Close any open files.

1512 %s. The network subsystem is down Reboot the machine.

1513 %s. The network dropped the connection Make sure the peer is running and the network
connections are working.

1514 %s. No buffer space is available This might be because you are running several
applications, or an application is not releasing
resources.

1515 %s. The network cannot be reached from
this host at this time

Make sure the routers are functioning
properly.

1516 %s. Attempt to connect timed out without
establishing a connection

Make sure the machine is running and on the
network.

1517 %s. The host cannot be found Make sure you can ping the host, check you
hosts file or DNS server.

1518 The network subsystem is unavailable Make sure the network services are started on
machine.

1519 %s. Invalid host name specified for
destination

The host name cannot be resolved to an IP
address. Enter the name to the hosts file or
DNS server.

1520 The specified address in not available Make sure the host name is not zero. Try
pinging the host.

3000 initialization successfully finished N/A

3001 Node resync from map host was not
requested because either host name or port
number is missing

If you are trying to disable a connection to the
platform adapter, then this message is OK. If
you want to be connected to the platform
adapter, then use the Administrator to check
the map host settings.

3500 Connection to %s was successful N/A

Table C-15. PA Resync Manager Error Messages (continued)

Error Number Error Resolution
398 Designing and Managing Behavior Models

Error Messages
Server Manager Error Messages

Following is a list of Server Manager error messages.

Table C-16. Server Manager Error Messages

Error Number Error Resolution

1 OLE initialization failed. Make sure that
the OLE libraries are the correct version.

N/A

2 Perl create failed. N/A

3 Initialization of value manager thread
failed.

N/A

4 Failed to restore MibDirectory in
configuration settings.

N/A

5 Failed to open configuration settings
while trying to restore mib information.

N/A

6 Discrepancy in data. File:
SERVER_CS.CPP, Line: value.

N/A

10 Conflict in data. File: SERVER_CS.CPP,
Line: value.

N/A

11 Internal Error. File: SERVER_CS.CPP,
Line: value.

N/A

20 Cannot read configuration settings value:
Bind.

N/A

21 Cannot connect to Tcpip configuration
settings information.

N/A

22 Cannot read configuration settings value:
IPAddress.

N/A

23 Couldn’t find value in map. N/A

24 Error while reading database.
Poll/Mask:value uses a simple trigger
that doesn’t exist in database.

N/A

25 Please report error number value to
technical support.

N/A

26 User validation failed: Unable to
communicate with ncsecurity process
:value.

~

1001 Windows sockets initialization failed. Install TCP/IP.

1002 Initialization failed, cannot find
ncperl.pl.

Check NCPerl.pl location.
Appendix C, Error Messages 399

Error Messages
1003 Failed to open MIB: value. Check MIB location.

1004 Failed to parse MIB. Invalid MIB. Check configuration to see if the
correct MIB is specified.

1010 Failed to validate poll: value. The poll
will be turned off.

Check the poll condition using the Client
Application.

1100 value (database error). Try to resolve using the message. If not, call
support.

1101 Failed to connect to database. ODBC
Connection String in configuration
settings is invalid or can’t find database
server.

Use InstallDB to re-create the ODBC connection
string.

1102 Failed to connect to database. ODBC
Connection String in configuration
settings is empty.

Use InstallDB to re-create the ODBC connection
string.

1103 Version table validation failed.
NC_Version table doesn’t exist in
database.

Upgrade the NerveCenter database to version 3.5
standards.

1200 Failed to open configuration settings
while trying to restore mib information.

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1201 Updated License key is invalid. An invalid license key was entered. Check the
key.

1202 Cannot connect to configuration settings. Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1203 Cannot open key value. Use the NerveCenter Administrator to check the
configuration settings.

1204 Cannot add value value. Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1205 Cannot read configuration settings value
in MapSubNets key.

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1206 Invalid configuration settings Entry for
the value Method in the Platform key.

Only Manual and Auto are allowed. Check for
case.

1207 Cannot read configuration settings value:
value

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1208 Cannot write configuration settings
Value: value

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1210 Cannot find License key in configuration
settings.

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

Table C-16. Server Manager Error Messages (continued)

Error Number Error Resolution
400 Designing and Managing Behavior Models

Error Messages
1300 value (Import behavior/database error). Try to resolve using the message. If not, call
support.

1313 Server alarm instance maximum
exceeded. Please restart Server.

Restart server.

2001 The account NCServer.exe is running
under does not have the advanced user
right “Act as part of the operating
system.”

Use User Manager to give advanced user right to
the group or user that NCServer is running
under. You will have to stop and restart
NCServer.exe

2002 The user or a group the user belongs to
does not have the advanced user right
“Logon as a batch job.”

Use User Manager to give advanced user right to
the group or user.

2003 The user ID value does not exist. Type in a user ID that exists. Check User
Manager.

2004 The password is incorrect for user ID
value.

Type in a legal password for the user ID you
entered

2005 License violation. Exceeded number of
allowed nodes. The number of managed
nodes exceeds the limits of the license.

Either unmanage some nodes or contact your
authorized sales representative for an upgrade.

2006 One of the following messages:

� Invalid Product ID in license key.

� No nodes specified in license.

� No users specified in license.

� Illegal start date specified.

Check with customer support to see that the
license was generated correctly.

Invalid License Key. NerveCenter could not decode the license.
Check for typographical errors in the key or call
support to get the key validated and/or replaced.

License will expire in less than 14 days. Your NerveCenter evaluation license will expire
within 14 days. Contact sales or support to get
the license extended.

License has expired. Your NerveCenter evaluation license has
expired. Contact sales or support to get the
license extended.

Table C-16. Server Manager Error Messages (continued)

Error Number Error Resolution
Appendix C, Error Messages 401

Error Messages
2007 The ncadmins, ncusers not defined on the
server machine and the user does not
have root permissions.

Log in as root to connect to the Server. If you
cannot log in as root, do one of the following:

� If your system uses NIS, define the groups
ncadmins and ncusers on the NIS server
machine, in the /etc/group file, and rebuild
the NIS database.

� If you system does not use NIS, define the
two groups in the /etc/group file of the
machine where the Server is running.

2008 User does not have either administrator
or user permissions.

Log in as root to connect to the Server. If you
cannot log in as root, do one of the following:

� If your system uses NIS, include your user
ID in either the ncadmins or ncusers group
on the NIS server machine, in the /etc/group
file, and rebuild the NIS database.

� If your system does not use NIS, include
your user ID in either the ncadmins or
ncusers group on the machine where the
Server is running.

3001 Request to delete the node value failed
because the node doesn’t exist.

N/A

3002 Failed to find socket in server’s map.
Line: value.

3003 Exiting due to a SIGTERM signal.

3004 Primary thread initialization successful.

Table C-16. Server Manager Error Messages (continued)

Error Number Error Resolution
402 Designing and Managing Behavior Models

Error Messages
Trap Manager Error Messages

Following is a list of Trap Manager error messages.

Table C-17. Trap Manager Error Messages

Error
Number

Error Resolution

1 Error in TrapManagerWnd::Initialize - failed to
create GetHostByAddr thread.

2 Error in TrapManagerWnd::LaunchTrapper -
failed to create trapper process.

3 Error in
TrapManagerWnd::CreateCheckTrapperThread
- failed to create new thread.

5 Error in
TrapManagerWnd::InitializeMSTrapService -
failed to get proc address.

6 Error in
TrapManagerWnd::InitializeMSTrapService -
error from SnmpMgrTrapListen (last error).

7 Error in
TrapManagerWnd::InitializeMSTrapService -
failed to create trap listen thread.

8 Error in TrapManagerWnd::Initialize - Failed to
create trap stream socket.

9 Error in TrapManagerWnd::Initialize - Failed to
listen on trap stream socket.

10 Error in TrapManagerWnd::OnTraceTraps -
Failed to create trace file for traps.

1001 CTrapManagerWnd::OnTrapExist -
gethostbyname from trap data with snmptrap
failed for value.

1002 Error in trap service or trap service down. Check SNMP service under Windows.

1003 CTrapManagerWnd::OnInvalidSignature - Error
in receiving data on NC socket.

Check for consistency in version numbers
of trapper and NerveCenter executables.

1004 Expected MSTRAP or OVTRAP in
NerveCenter configuration settings.

Reinstall NerveCenter and make sure you
choose appropriate platform integration.

2001 MS Trap service threw exception in GetTrap. Make sure you aren’t accidently making
SNMP get requests to port 162.
Appendix C, Error Messages 403

Error Messages
NerveCenter installation Error Messages (UNIX)

Following is a list of NerveCenter installation error messages.

2002 Error processing trap data. Make sure you aren’t accidently making
SNMP get requests to port 162.

3001 Trap Manager Initialization successfully
finished.

3002 Check Trapper—Trapper process died.
restarting Trapper.

Table C-17. Trap Manager Error Messages (continued)

Error
Number

Error Resolution

Table C-18. NerveCenter Installation Error Messages (UNIX)

Error Resolution

Space under dirname is INSUFFICIENT to
install Open NerveCenter

Free up space in the file system by removing files, or choose
another place for installation.

The directory dirname must reside on a
local disk

The directory you specified for Open NerveCenter installation
is on a disk that is not on the local file system. Pick a new
directory or re-mount the disk.

Write permission is required by root for
dirname directory

The directory you specified for Open NerveCenter installation
does not have write permission for root. Choose another
directory or change the permissions.

Please create the desired destination
directory for NerveCenter and re-run the
installation script

The directory you specified for Open NerveCenter installation
does not exist. Choose another directory or create the original.

Invalid mount point The installation script could not find the CD-ROM drive and
prompted you for its location. The path you specified was not
valid. Verify that the drive exists, is mounted, and is configured
correctly.

ProcessName is running on the system.
Please exit from (or kill) processName
process.

The installation script found that the nervectr or ovw process
was running. Exit from or kill the process and re-run the
installation script.

These processes must be stopped before
Open NerveCenter can be installed. Please
kill these processes and re-run the
installation script.

The installation script found processes that need to be killed
before installation, asked if you wanted it to stop them, and you
said no. You must manually exit from or kill the processes and
re-run the installation script.
404 Designing and Managing Behavior Models

Error Messages
hostname is not a valid host name The host that you provided to the script for integration with
another application is not a valid host. Check the name of the
host (capitalization, spelling, and so on) and try again.

hostname does not have OpenView
installed on it.

Before configuring an OpenView host for Open NerveCenter’s
integration with Open LANAlert or OperationsCenter,
OpenView must already be installed on the host. Stop your
Open NerveCenter installation and review the prerequisites.

OpenView has not been configured on this
system yet.

Before configuring an OpenView host for Open NerveCenter’s
integration with LANAlert or OperationsCenter, you must have
already done the basic OpenView configuration for the host.
Rerun the installation script, make sure to answer “Yes” when
questioned whether you want to configure OpenView for this
host, and then proceed with your integration with other
applications.

I don’t know how to install on this
architecture

Installation is supported for HP-UX and Solaris. The script
issues this message if attempting to install on an architecture
that is not in this set.

Can’t cd to installation_path/userfiles Make sure the directory exists and has appropriate permissions.

Can’t open hostname.conf The script couldn’t create the file or couldn’t open an existing
configuration file. Check installation_path/userfiles to make
sure that root has permission to write in this directory, that
hostname.conf has read permission set, if it exists, and that
localhost.conf exists and has read permission set.

Can’t create hostname.ncdb
Can’t create hostname.node

The script was attempting to create the indicated file by copying
data from another file. Check installation_path/userfiles to
make sure that root has permission to write in this directory, and
that localhost.ext exists and has read permission set.

Can’t open /etc/rc
Couldn’t re-create /etc/rc
Couldn’t modify /etc/rc

The script couldn’t modify /etc/rc to call the Open NerveCenter
rc script. Edit the file and add a line that executes
installation_path/bin/rc.openservice. There’s no need to rerun
the installation script after this correction.

Can’t append to /etc/rc.local The script couldn’t modify /etc/rc.local to call the Open
NerveCenter rc script. Edit the file and add a line that executes
installation_path/bin/rc.openservice. There’s no need to rerun
the installation script after this correction.

Table C-18. NerveCenter Installation Error Messages (UNIX) (continued)

Error Resolution
Appendix C, Error Messages 405

Error Messages
Can’t create /etc/rc2.d/K94ncservice on
Solaris

Can’t create /etc/rc2.d/K940ncservice on
HP-UX

The script couldn’t create the Open NerveCenter rc script
/etc/rc2.d/K94ncservice on Solaris or K940ncservice on HP-UX

. Copy installation_path/bin/rc.openservice to
/etc/rc2.d//K94ncservice on Solaris or K940ncservice on
HP-UX

. There’s no need to rerun the installation script after this
correction.

An error occurred in trying to contact the
Server “hostname”. As a result, the
information that you have specified cannot
be used to complete this NIS update.
Unable to modify filename. It doesn’t exist!
Unable to modify filename. File size is 0!

The script was attempting to update system services and failed.
Correct the specific error (perhaps the host name or file name
was entered incorrectly) and rerun the script. If the error isn’t
easily corrected, you can edit /etc/services yourself. Make sure
that the following lines are included in the file:

SNMP 161/udp
SNMP-trap 162/udp

If you’re running NIS, be sure to make these changes on the
NIS server, change to the NIS directory, and run make services.

Table C-18. NerveCenter Installation Error Messages (UNIX) (continued)

Error Resolution
406 Designing and Managing Behavior Models

Error Messages
OpenView Configuration Error Messages (UNIX)

Following is a list of OpenView configuration error messages.

Table C-19. OpenView Configuration Error Messages (UNIX)

Error Resolution

Configuration of OpenView was not entirely
successful. You need to go back and
double-check the steps that failed above.

This message will be displayed if any part of the
OpenView configuration didn’t succeed. Scroll back
through the output of the script, looking for messages that
include the word FAILED. Immediately following such a
line will be the specific system error messages that resulted
from the part of the script that failed.

Installing registration...FAILED The script was attempting to copy a file into
NNM_dir/registration/C, where NNM_dir is the location of
your OpenView installation. Make sure that this directory
exists and that root has write permission for it.

Couldn’t create NNM_dir/help/C/ncapp The script was attempting to create the directory
NNM_dir/help/C/ncapp, where NNM_dir is the location of
your OpenView installation. Make sure that help/C exists
and that root has write permission for it.

Installing Help...FAILED The script was attempting to copy files into Network Node
Manager_dir/help/C/ncapp. Make sure the directory exists
and that root has write permission for it. If you got the
previous error message, you will also receive this one.

Installing Fields...FAILED The script was attempting to copy a file into
NNM_dir/fields/C. Make sure the directory exists and that
root has write permission for it.

Installing Symbols...FAILED The script was attempting to copy a file into
NNM_dir/symbols/C. Make sure the directory exists and
that root has write permission for it.

Installing Bitmaps...FAILED The script was attempting to copy files into
NNM_dir/bitmaps/C. Make sure the directory exists and
that root has write permission for it.

Notifying <<OpenView...>> FAILED The script was attempting to execute ovw. Make sure that
root has appropriate permissions for ovw and that you have
run ovstartup on this computer.

Installing Events...FAILED The script was attempting to execute xnmevents. Make
sure that root has appropriate permissions for xnmevents
and that xnmtrap is not running on this computer.
Appendix C, Error Messages 407

Error Messages
408 Designing and Managing Behavior Models

Index
A
Action Manager error messages 386,

387
Action Router alarm action 12, 257
Action Router Rule Definition
window 310, 311
Action Router Rule List window 280,

309
Action Router rules

conditions, creating 310
Counter() 291
deleting 333
functions 312
In() 159
listing, existing 309
rule actions, defining 315
variables, NerveCenter 293

Action Router tool 12, 257
Administrator, NerveCenter 18
alarm actions 9, 15, 30, 255

Action Router 12, 257
Beep 262
Clear Trigger 263
Command 264
Delete Node 266
EventLog 266
FireTrigger 11, 269
Inform OpC 276
Inform Platform 277
Log to File 281
Microsoft Mail 282
Notes 283
Paging 285
Perl Subroutine 286
Send Trap 296
Set Attribute 138, 300
SMTP Mail 302
SNMP Set 303

Alarm Counter action 258
state diagrams 258, 259

Alarm Counter Action dialog 260
Alarm Definition List window 99,

102, 225, 227, 244, 351, 353
Alarm Definition window 103, 226,

228, 245
Alarm Filter error messages 391
alarm scope 39, 230
alarms 14, 15, 28

BetterNode 270
correlation expressions 246
defining 227
deleting 333
documenting 240
enabling 244
examples 30, 45
filtering rules 89
high traffic 231
IF-IfFramePVC 323
IF-IfStatus 320
IfLinkUpDown 269
IfLoad 232
IfLoad state diagram 46
interface-type 322
IPSweep, enabling 102
listing 225
monitoring loads 30
node status state diagram 8
notes 240
performing actions conditionally

307
property groups, changing 333
scope, changing 335
state diagrams 15, 30, 45
state severties 339
TcpRetransMon 45
using 223

assigning
property groups to nodes 125,

130, 132, 133, 138, 140
AssignPropertyGroup() function 158
AssignPropertyGroup() function 125,

133, 158
associating

actions with transitions 237
attributes

nodes 32
nodes, changing 337
polls 34
severites used by NerveCenter

342
severities 341
trap masks 36
triggers 35
variable bindings 182

Authentication Protocol for SNMP v3
Nodes 112
auto-classification 108, 114, 118, 119

B
base objects 182
Beep Action dialog 262
Beep alarm action 262
behavior models 3, 15, 42

creating 42
creating multi-alarm 317
definition 28
design 27, 28
diagram 42
Discovery 98
example 45
exporting 354
exporting to files 353
exporting to other servers 351
files 353, 354, 362
importing 362
409

IPSweep 96, 102
multi-alarm 270, 318
predefined 16, 28

BetterNode alarm 270
boolean expression, creating alarm
from 246
built-in triggers 195, 199

CANNOT_SEND 197, 199
ERROR 195, 196, 197, 199
example 203
firing sequence 197
how NerveCenter fires 195
ICMP_ERROR 196, 197, 199
ICMP_TIMEOUT 196, 197, 199
ICMP_UNKNOWN_ERROR

199
INFORM_CONNECTION_
DOWN 197, 198
INFORM_CONNECTION_UP

197
INFORMS_LOST 197
list of 199
matching errors 198
NET_UNREACHABLE 196,

197, 200
NODE_UNREACHABLE 196,

197, 200
order fired 197
PORT_UNREACHABLE 196,

197, 200
RESPONSE 197, 200
SNMP_AUTHORIZATIONERR

200
SNMP_BADVALUE 200
SNMP_DECRYPTION_ERROR

200
SNMP_ENDOFTABLE 200
SNMP_ERROR 195, 197
SNMP_GENERR 201
SNMP_NOSUCHNAME 201
SNMP_NOT_IN_TIME_
WINDOW 201
SNMP_READONLY 201
SNMP_TIMEOUT 195, 196, 197,

201
SNMP_TOOBIG 201
SNMP_UNAVAILABLE_
CONTEXT 201

SNMP_UNKNOWN_CONTEXT
201

SNMP_UNKNOWN_
ENGINEID 202
SNMP_UNKNOWN_
USERNAME 202
SNMP_UNSUPPORTED_SEC_
LEVEL 202
SNMP_WRONG_DIGEST 202
UNKNOWN_ERROR 202

C
CANNOT_SEND built-in trigger

197, 199
CaseContainsString() 159
CaseContainsWord() 159
categorizing nodes 141
changing

alarm property 333
alarm scope 335
node attributes 337
node property group 334
object property 333
object property group 333
poll property 333
properties 333
property groups 334
state icons size 234
transition icon sizes 239

classification of SNMP version 108,
114

all nodes manually 116
confirming the version of a node

116
one or more nodes manually 115

Clear Trigger Action dialog 264
Clear Trigger alarm action 263
CLI 20
Client, NerveCenter 19
Code (ICMP field) 196, 197
colors

creating custom 347
Command Action dialog 102, 265
Command alarm action 264

variables, NerveCenter 293
command line interface 20
conditional alarm actions 307
conditions

Action Router rules 310

finding set of network 6
network, detecting 4, 29
persistent network 5
responding to network 9

conditions, tracking network 29
ContainsString() 159
ContainsWord() 160
copying

objects 329, 330
property groups 329

corrective actions 11
correlating conditions 4
correlation expression list window

247, 250
correlation expression notes window

253
correlation expressions

about 246
copying 250
creating 247
creating alarm from 251
notes 253

Counter() function 291
create alarm using correlation
expression window 251
creating

Action Router rule conditions 310
behavior models 42
colors, custom 347
multi-alarm behavior models 317
OpC trigger functions 215
poll conditions 150, 152
properties 124
property groups, based on existing

126
property groups, based on MIBs

127
property groups, manually 129
severities 345
trap masks 205
trigger functions 180

CsCpuBusy poll 167

D
data sets

nodes 32
polls 34
severities 341
trap masks 36
410 Designing and Managing Behavior Models

triggers 35
data sources, other 193
database, NerveCenter 13
default severities 344
DefineTrigger() function 155
DefineTrigger() function 155
defining

Action Router rule conditions 311
alarms 227
nodes 47, 95, 107
nodes, a set of 3
nodes, manually 104
OpC masks 212
Perl subroutines 288
polls 147
properties 121
property groups 121
rule actions 315
states 232, 233
transitions 235, 236
trap masks 176

Delete Node alarm action 266
deleting

Action Router rules 333
alarms 333
nodes 333
objects 331
OID to property group mappings
332
OpC masks 333
Perl subroutines 333
polls 333
property groups 332
severities 332
states 235
transitions 240
trap masks 333

delta() 154
Deserialize error messages 391
Destination Address (ICMP field)

196, 198
detecting condition persistence 5
detecting conditions 4, 29
digest keys 50
discovering nodes 47, 95, 96, 107
Discovery alarm 264
Discovery behavior model 98
distributed NerveCenter Servers 23
documenting

alarms 240
Perl subroutines 289
polls 164, 166

downstream alarm suppression 291
dsicmpstatus alarm 300
DumpParentsToFile() 292

E
edit correlation expression window

247, 250
elapsed (poll condition function) 154
enabling

alarms 244
IPSweep alarm 102
objects 328
OpC masks 220
polls 168
trap masks 190

ERROR built-in trigger 195, 196, 197,
199

error status for SNMP v3 operations
56

Event Log Action dialog 266
EventLog alarm action 266

log entry example 268
Expanded Color window 347
Expanded Rule Condition page 314
Export Model/Object dialog 352, 354
Export Objects and Nodes dialog 356,

359
exporting

behavior models 354
behavior models, to files 353
behavior models, to other servers

351
node relationships to files 292
nodes 349
nodes to a file 358
nodes to other servers 355
objects 349, 360
objects to a file 358
objects to other servers 355
relationships node 292

F
fields

log entry 268
mail message 268

finding set of network conditions 6
Fire Trigger Action dialog 101, 271

Fire Trigger alarm action 269
FireTrigger alarm action 11
FireTrigger() function 156
FireTrigger() function 156
Flatfile error messages 391
functions

Action Router rules 312
AssignPropertyGroup 158
AssignPropertyGroup() 125, 133
CaseContainsString() 159
CaseContainsWord() 159
ContainsString() 159
ContainsWord() 160
Counter() 291
DefineTrigger 155
DefineTrigger() 155
DumpParentsToFile() 292
Fire Trigger 156
FireTrigger() 156
In 159
In() 159
LoadParentsFromFile() 291
node relationship functions 291
OpC triggers 216
Perl subroutines 290
poll conditions 153
poll conditions, for 154
RemoveAllParents() 292
string matching 159
string-matching 159
triggers 181
variable bindings 182

G
GetRequest 195, 198

H
high traffic

alarms 231
HP OpenView IT/Operations 209

I
ICMP fields 196, 197, 198
ICMP requests 196, 198
ICMP_ERROR built-in trigger 196,

197, 199
ICMP_TIMEOUT built-in trigger

196, 197, 199
ICMP_UNKNOWN_ERROR built-in
trigger 199
Index 411

IcmpStatus alarm 203
IF-IfColdWarmStart alarm 324
IF-IfFramePVC alarm 323
IF-IfNmDemand alarm 325
IF-IfStatus alarm 320
IfLinkUpDown alarm 263, 269
IfLoad alarm 232

state diagram 232
IF-SelectType Perl subroutine 321
IfUpDownStatusByType behavior
model 318
Import Behavior Model dialog 363
importing

behavior model files 362
node files 362
node relationships from files 291
nodes 349
object files 362
objects 349
relationships node 291

In() function 159
in() function 159
Inform 273, 279
Inform Action dialog 275, 278
Inform alarm action

trap variable bindings 208
variable bindings 207

Inform NerveCenter error messages
392

Inform OpC Action dialog 276
Inform OpC alarm action 276
Inform OV error messages 392
Inform Platform alarm action 277
INFORM_CONNECTION_DOWN
built-in trigger 197, 198
INFORM_CONNECTION_UP
built-in trigger 197
INFORMS_LOST built-in trigger 197
instances 182
integration with network management
platforms 24, 25
integration with nmps for node
information 25
interfaces

high traffic 231
interface-type alarms 322
IP fields 198
IPSweep alarm

definition 100

enabling 102
modifying 99
state diagram 100

IPSweep behavior model 96
IT/O 209

K
keys, SNMP v3 50

L
levels of severities 343
listing

Action Router rules, existing 309
alarms 225
OpC masks 211
polls 145
properties 122, 123
property groups 122
trap masks 172, 174

LoadParentsFromFile() 291
loads alarm, monitoring interface 30
log entries

fields 268
log entry example 268
Log to Database action dialog 280
Log to Database alarm action

variables, NerveCenter 293
Log to File Action dialog 281
Log to File alarm action 281

variables, NerveCenter 293
Log to File error messages 394, 395
log, SNMP v3 operations 51, 53, 54,

55
logging 10
looking for a sequence of conditions 7
looking for high traffic on four
interfaces 40

M
mail messages

fields 268
main NerveCenter components 13
managed nodes and their interfaces

230
managing NerveCenter objects 327
mapping OIDs to property groups 140
Mask Definition window 176
mask definition window 191, 205
Mask List window 174, 176, 190, 205
menus 160

Merge or Overwrite Property Group
window 129
MIB objects 142
MIB to property group window 128
Microsoft Mail Action dialog 283
Microsoft Mail alarm action 282
mod files 353, 354, 358, 359, 362
modifying

IPSweep alarm 99
monitoring

interface loads alarm 30
nodes, a set of 30

multi-alarm behavior models 270,
317, 318

multi-homed nodes 199
multiple NerveCenter servers 204

N
NerveCenter

Action Router tool 12
Administrator 18
Client 19
data sources, other 193
database 13
distributed servers 23
functions for poll conditions 154
log entry fields 268
mail message fields 268
nodes managing 3
objects 31
Server 13
servers, multiple 23, 204
severities 339
what is 2

NerveCenter error messages 384
NerveCenter installation error
messages 404
NerveCenter user interface 17
NerveCenter variables 292
NerveCenter Web Client 20
NerveCenter’s alarm console 22
NET_UNREACHABLE built-in
trigger 196, 197, 200
network conditions

finding set of 6
persistent 5
responding to 9

network conditions, detecting 4, 29
network conditions, tracking 29
412 Designing and Managing Behavior Models

network management platforms
integration with 25
map colors 343

New Severity window 345
node classification 108, 114, 118, 119

all nodes manually 116
confirming the SNMP version of a
node 116
one or more nodes manually 115

Node Definition window 105, 130,
131

Node List window 60, 104, 108, 110,
112, 115, 117, 131, 132, 336, 338

node relationship functions 291, 292
NODE_UNREACHABLE built-in
trigger 196, 197, 200
nodes 28, 32

assigning to property groups 125,
130, 132, 133, 138, 140

attributes 32
changing attributes 337
data set 32
defining a set of 3
defining, manually 104
deleting 333
discovering 47, 95, 96, 107
exporting relationships to files

292
exporting to a file 358
exporting to other servers 355
importing 362
importing relationships from files

291
monitoring a set of 30
multi-homed 199
NerveCenter managing 3
node status state diagram 8
property groups, changing 334
relationship with poll 44
relationship with properties 43
relationship with property groups

43
relationships, exporting 292
relationships, importing 291
relationships, removing from
database 292
source 96
suppressing 336

not_present (poll condition function)
154

notes
alarms 240
Perl subroutines 289
polls 164, 166

Notes alarm action 283
notes for IfDataLogger alarm 284
notification 10

O
objects

copying 329, 330
deleting 331
enabling 328
exporting to a file 358
exporting to other servers 355
files 358, 359, 362
importing 362
NerveCenter 31
properties, changing 333
property groups, changing 333
types you can export 360

objects in the database 14
OID to Property Group dialog 141
OID to property group mappings 140

deleting 332
OpC Manager error messages 395
OpC Mask Definition window 213,

221
OpC Mask List window 211, 212, 221
OpC masks

defining 212
deleting 333
enabling 220
listing 211

OpC trigger functions 216
creating 215
examples 217

OpC triggers 216
OpenView 404
OpenView configuration error
messages 407
OpenView event browser 25, 26
OpenView IT/Operations 209
operations log 51, 53, 54, 55

P
PA Resync Manager error messages

397

Paging Action dialog 285
Paging alarm action 285
parent child relationships, nodes 291
Perl

built-in triggers, use with 196
Counter() 291
defining subroutines 288
deleting subroutines 333
documenting 289
example 296
functions 290
In() 159
notes 289
pop-up menu 160
string-matching functions 159
subroutines 136
variables, NerveCenter 292, 293

Perl functions
AssignPropertyGroup 158
DefineTrigger 155
Fire Trigger 156
In 159
string matching 159

Perl Subroutine Action dialog 136,
138, 287

Perl Subroutine alarm action 286
Perl Subroutine Definition window

289
Perl Subroutine List window 288
Perl subroutines

built-in triggers 196
IF-SelectType 321

ping requests 196, 198
pings 196, 198
platform names, associated with
severities 343
poll condition functions 154

delta() 154
elapsed 154
not_present 154
present 155

Poll Condition page 134, 152
poll conditions 133

creating 150, 152
DefineTrigger() 155
examples 162, 163
FireTrigger() 156
functions 153, 154
In() 159
Index 413

variables, NerveCenter 293
Poll Definition window 146, 148, 165,

169
Poll List window 145, 147, 164, 168,

328, 337
Poll Manager error messages 395
Poll Notes and Associations dialog

166
Poll pop-up menu 328
polls 28, 34

attributes 34
built-in triggers 195
conditions, creating 152
CsCpuBusy 167
data set 34
defining 147
deleting 333
documenting 164, 166
enabling 168
listing 145
notes 164, 166
pending list 195
ping requests 196, 198
property groups, changing 333
relationship with nodes 44
SNMP requests 195, 198
suppressible, making 336, 337
using 143

pop-up menu for Perl 160, 161
PORT_UNREACHABLE built-in
trigger 196, 197, 200
predefined behavior models 16, 28
predefined NerveCenter severities

344
present (poll condition function) 155
properties 3, 28, 33

changing 333
creating 124
defining 121
listing 123
relationship with nodes 43

Property dialog 334
Property Group dialog 133, 334
Property Group List window 126,

127, 129, 329
property groups 28, 33

assigning to nodes 125, 130, 132,
133, 138, 140

changing 333, 334

copying 329
creating manually 129
creating,based on existing 126
creating,based on MIBs 127
defining 121
deleting 332
listing 122

property groups and properties 33
property groups relationship with
nodes 43
Protocol Manager error messages 396

R
RemoveAllParents() 292
Replace Severity dialog 332
responding to network conditions 9
RESPONSE built-in trigger 197, 200
role in network management strategy

21
routers

interface problems, alarm for 6
Rule Action page 315
rule actions, defining 315
rules for alarm filters 89

S
scope 39, 230

changing 335
Scope dialog 335
scripts See Perl
security for SNMP v3 49
Security Level for SNMP v3 Nodes

110
Send Trap Action dialog 297
Send Trap alarm action 296
Sequence Number (IP field) 198
Server Manager error messages 399
Server Selection dialog 352, 357
servers

alarm filtering rules 89
distributed NerveCenter 23
multiple 204

servers, multiple NerveCenter 23
Set Attribute Action dialog 139, 301
Set Attribute alarm action 138, 300
severities 15, 341

appear as in NerveCenter 342
attributes 341, 343
attributes used by NerveCenter

342

creating 345
data set 341
default 344
deleting 332
levels 343
map colors in NMPs 343
platform names 343
state diagrams 339

Severity List window 345
smart polling 4
SMTP mail action dialog 302
SMTP Mail alarm action 302
SNMP requests 195, 198
SNMP Set Action window 303
SNMP Set alarm action 303
SNMP settings 48

node classification 118, 119
SNMP v3

built-in triggers 200, 201, 202
Changing Authentication Protocol

112
Changing Security Level 110

SNMP v3 support 48
digest keys and passwords 50
error status 56
node classification 108, 114, 118,

119
operations log 51, 53, 54, 55
security 49
test poll 58

SNMP_AUTHORIZATIONERR
built-in trigger 200
SNMP_BADVALUE built-in trigger

200
SNMP_DECRYPTION_ERROR
built-in trigger 200
SNMP_ENDOFTABLE built-in
trigger 200
SNMP_ERROR built-in trigger 195,

197
SNMP_GENERR built-in trigger 201
SNMP_NOSUCHNAME built-in
trigger 201
SNMP_NOT_IN_TIME_WINDOW
built-in trigger 201
SNMP_READONLY built-in trigger

201
SNMP_TIMEOUT built-in trigger

195, 196, 197, 201
414 Designing and Managing Behavior Models

SNMP_TOOBIG built-in trigger 201
SNMP_UNAVAILABLE_CONTEX
T built-in trigger 201
SNMP_UNKNOWN_CONTEXT
built-in trigger 201
SNMP_UNKNOWN_ENGINEID
built-in trigger 202
SNMP_UNKNOWN_USERNAME
built-in trigger 202
SNMP_UNSUPPORTED_SEC_LEV
EL built-in trigger 202
SNMP_WRONG_DIGEST built-in
trigger 202
SnmpStatus alarm 274
Source Address (ICMP field) 196
standalone operation 22
State Definition dialog 233
state diagrams

Alarm Counter actions 258, 259
BetterNode 270
icon sizes 239
IF-IfColdWarmStart 324
IF-IfFramePVC alarm 323
IF-IfNmDemand 325
IF-IfStatus 320
IfLinkUpDown 269
IfLoad 46
IfLoad alarm 232
interface-type alarms 322
IPSweep 100
link-down condition, detecting 5
monitoring loads 30
node status 8
states, defining 232, 233
TcpRetransMon 45

state transitions See transitions
State/Transition Size dialog 234, 239
states

defining 232, 233
deleting 235
icons, changing sizes 234

status, error for SNMP v3 operations
56

string matching functions 159
string-matching functions 159, 160
subobject scope alarms 40
subobjects 182
subroutines See Perl
suppressing nodes 336
suppressing polling 336, 337

T
TcpRetransMon alarm 45
tips for using property groups and
properties 141
tools

Action Router tool 12
tracking conditions 29
traffic alarm, high 231
Transition Definition dialog 101, 135,

137, 139, 236, 237
transitions 15

actions 227
actions, associating 237
causing 11
defining 235, 236
deleting 240
icon sizes, changing 239

Trap Manager error messages 403
trap mask trigger functions

In() 159
trap masks 28, 36

attributes 36
creating 205
data set 36
deleting 333
enabling 190
listing 172, 174
using 171

trap masks, defining 176
traps

Inform variable bindings 208

Trigger Function page 207
trigger functions 181

creating 180
examples 184, 185, 209
OpC 216
variables 183
variables, NerveCenter 293

triggers 15, 29
attributes 35
built-in 195, 199, 203
built-in, list of 199
data set 35
sources 226

triggers fired by high-traffic poll 230
Type (ICMP field) 196, 197

U
understanding NerveCenter 1
UNKNOWN_ERROR built-in trigger

202
using a network management
platform’s discovery mechanism 97
using Action Router’s object lists 313

V
v3TestPoll 58
variable bindings 36, 182

attributes 182
base objects 182
functions 182
Inform alarm action traps 207
Inform traps 208
instances 182
NerveCenter Inform traps 208
subobjects 182
values 182

variables
NerveCenter 292, 293
OpC trigger functions 216
trigger functions 183
Index 415

416 Designing and Managing Behavior Models

	Designing and Managing Behavior Models
	Contents
	Understanding NerveCenter
	What is NerveCenter?
	How NerveCenter Manages Nodes
	Defining a Set of Nodes
	Detecting Conditions
	Correlating Conditions
	Detecting the Persistence of a Condition
	Finding a Set of Conditions
	Looking for a Sequence of Conditions

	Responding to Conditions
	Notification
	Logging
	Causing State Transitions
	Corrective Actions
	Action Router

	Main NerveCenter Components
	The NerveCenter Server
	The NerveCenter Database
	Objects in the Database
	Behavior Models
	Predefined Behavior Models

	The NerveCenter User Interface
	The NerveCenter Administrator
	The NerveCenter Client
	The NerveCenter Web Client
	The Command Line Interface

	Role in Network Management Strategy
	Standalone Operation
	Using Multiple NerveCenter Servers
	Integration with Network Management Platforms
	Integration with NMPs for Node Information

	Behavior Models and Their Components
	Behavior Models
	Detecting Conditions
	Tracking Conditions
	Monitoring a Set of Nodes

	NerveCenter Objects
	Nodes
	Property Groups and Properties
	Polls
	Trap Masks
	Alarms
	Alarm Scope

	Constructing Behavior Models
	How the Pieces Fit Together
	An Example of a Behavior Model

	�NerveCenter Support for SNMP v3
	Overview of NerveCenter SNMP v3 Support
	NerveCenter Support for SNMP v3 Security
	NerveCenter Support for SNMP v3 Digest Keys and Passwords

	SNMP v3 Operations Log
	Signing a Log for SNMP v3 Errors Associated with Your Client
	Signing a Log for SNMP v3 Errors Associated with a Remote Client or Administrator
	�Viewing the SNMP v3 Operations Log

	SNMP Error Status
	Using the SNMP Test Version Poll
	Testing SNMP v1 and v2c Agents
	Testing SNMP v3 Agents
	How To Use the Test Version Poll

	Getting Started with NerveCenter Client
	Starting the Client
	Connecting to a Server
	Connecting to a Server Manually
	Connecting to a Server Automatically
	Sharing MIB Information from Multiple Servers
	Selecting the Active Server
	Deleting a Server from the Server List
	Changing the Client’s Server Port

	Setting Up Alarm-Instance Filters
	Filtering Alarms by IP Range
	IP Subnet Filter Exclusion Rules
	IP Subnet Filter Examples

	Filtering Alarms by Severity
	Filtering Alarms by Property Groups
	Associating a Filter with a Server
	Rules for Associating Filters with Alarms
	Multiple Filters are ORed Together
	Multiple Conditions in a Single Filter are ANDed Together

	Specifying Heartbeat Messaging
	Modifying the Heartbeat Message Interval
	Deactivating Heartbeat Messaging

	Disconnecting from a Server

	Discovering and Defining Nodes
	Discovering Nodes
	Using a Network Management Platform’s Discovery Mechanism
	Using NerveCenter’s IPSweep Behavior Model
	Modifying the IPSweep Alarm
	Enabling the IPSweep Alarm

	Defining Nodes Manually

	Configuring SNMP Settings for Nodes
	Manually Changing the SNMP Version Used to Manage a Node
	Changing the Security Level of an SNMP v3 Node
	Changing the Authentication Protocol for an SNMP v3 Node
	Classifying the SNMP Version Configured on Nodes
	�Classifying the SNMP Version for One or More Nodes Manually
	Classifying the SNMP Version for All Nodes Manually
	Confirming the SNMP Version for a Node
	When NerveCenter Classifies a Node’s SNMP Version
	How NerveCenter Classifies a Node’s SNMP Version

	Defining Property Groups and Properties
	Listing Property Groups and Properties
	Listing Property Groups
	Listing Properties

	Creating a Property
	Creating a New Property Group
	Based on an Existing Property Group
	Based on the Contents of MIBs
	Adding Properties Manually

	Assigning a Property Group to a Node
	Using the Node Definition Window

	Using the Node List Window
	Using the AssignPropertyGroup() Function
	In a Poll Condition
	In a Trigger Function
	In a Perl Subroutine

	Using the Set Attribute Alarm Action
	Using OID to Property Group Mappings

	Tips for Using Property Groups and Properties
	Categorizing Nodes
	Move from the General to the Specific
	MIB Objects

	Using Polls
	Listing Polls
	Defining a Poll
	Writing a Poll Condition
	The Basic Procedure for Creating a Poll Condition
	Functions for Use in Poll Conditions
	NerveCenter Functions for Poll Conditions
	DefineTrigger() Function
	FireTrigger() Function
	AssignPropertyGroup() Function
	in() Function
	String-Matching Functions

	Using the Pop-Up Menu for Perl
	Examples of Poll Conditions
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Documenting a Poll
	How to Create Notes for a Poll
	What to Include in Notes for a Poll

	Enabling a Poll

	Using Trap Masks
	About Trap Masks
	How NerveCenter Decodes SNMP v2c/v3 Traps
	Listing Trap Masks
	Defining a Trap Mask
	Writing a Trigger Function
	Functions for Use in Trigger Functions
	Variable-Binding Functions

	Variables for Use in Trigger Functions
	Examples of Trigger Functions
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Documenting a Trap Mask
	How to Create Notes for a Trap Mask
	What to Include in Notes for a Trap Mask

	Enabling a Trap Mask

	Using Other Data Sources
	NerveCenter’s Built-In Triggers
	SNMP Requests
	Ping Requests
	Multiple Errors Examples

	Built-in Trigger Firing Sequence
	Matching Errors with Pending SNMP and Ping Requests
	Multi-homed Nodes
	A List of Built-In Triggers
	An Example Using Built-In Triggers

	Another NerveCenter
	Creating a Trap Mask
	Variable Bindings for NerveCenter Informs
	An Example Trigger Function

	HP OpenView IT/Operations
	Listing OpC Masks
	Defining an OpC Mask
	Writing an OpC Trigger Function
	Functions for Use in OpC Trigger Functions
	Variables for Use in OpC Trigger Functions
	Examples of OpC Trigger Functions

	Documenting an OpC Mask
	How to Create Notes for an OpC Mask
	What to Include in Notes for an OpC Mask

	Enabling an OpC Mask

	Using Alarms
	Listing Alarms
	Defining an Alarm
	Alarm Scope
	Defining States
	Defining a State
	Changing the Size of the State Icons
	Deleting a State

	Defining Transitions
	Defining a Transition
	Associating an Action with a Transition
	Changing the Size of Transition Icons
	Deleting a Transition

	Documenting an Alarm
	How to Create Notes for an Alarm
	What to Include in Notes for an Alarm

	Enabling an Alarm
	Correlation Expressions

	Alarm Actions
	Action Router
	Alarm Counter
	Beep
	Clear Trigger
	Command
	Delete Node
	EventLog
	Fire Trigger
	Inform
	Inform OpC
	Inform Platform
	Inform Specific Numbers
	Log to Database
	Log to File
	Microsoft Mail
	Notes
	Paging
	Perl Subroutine
	Defining a Perl Subroutine
	Functions for Use in Perl Subroutines
	Counter() Function
	Node Relationship Functions

	NerveCenter Variables
	Perl Subroutine Example

	Send Trap
	Set Attribute
	SMTP Mail
	SNMP Set

	Performing Actions Conditionally (Action Router)
	Listing Existing Action Router Rules
	Creating an Action Router Rule
	Defining a Rule Condition
	Functions for Use in Action Router Rule Conditions
	Using Action Router’s Object Lists

	Defining a Rule Action

	Creating Multi-Alarm Behavior Models
	IfUpDownStatusByType
	IF-IfStatus Alarm
	IF-SelectType Perl Subroutine
	Interface-type Alarms
	IF-IfFramePVC
	IfColdWarmStart Alarm
	IfNmDemand Alarm

	Managing NerveCenter Objects
	Enabling Objects
	Copying Objects
	Copying a Property Group
	Copying Other Objects

	Deleting Objects
	Using a Delete Button
	Using a Pop-Up Menu

	Changing an Object’s Property or Property Group
	Changing a Poll’s or an Alarm’s Property
	Changing a Node’s Property Group

	Changing an Alarm’s Scope
	Suppressing Polling
	Suppressing a Node
	Making a Poll Suppressible

	Changing Other Node Attributes

	NerveCenter Severities
	Definition of a Severity
	Severity Attributes Used by NerveCenter
	Severity Attributes and Network Management Platforms
	Level
	Platform Name

	Default Severities
	Creating a New Severity
	Creating Custom Colors

	Importing and Exporting NerveCenter Nodes and Objects
	Exporting Behavior Models to Other Servers
	Exporting Behavior Models to a File
	More About Exporting Behavior Models
	Exporting NerveCenter Objects and Nodes to Other Servers
	Exporting NerveCenter Objects and Nodes to a File
	More about Exporting Objects
	Importing Node, Object, and Behavior Model Files

	Communications and Data
	Debugging a Behavior Model
	Enabling a Behavior Model's Components
	Checking Properties and Property Groups
	Checking a Poll's Property
	Checking a Poll's Poll Condition
	Checking an Alarm's Property

	Matching Triggers and Alarm Transitions
	Identities of Triggers and Transitions
	Rules for Matching
	Name Rule
	Subobject Rule
	Node Rule
	Property Rule

	Examples of Matching Triggers and Transitions
	Example 1
	Example 2
	Example 3

	Auditing Behavior Models

	Error Messages
	User Interface Messages
	Error Messages
	Action Manager Error Messages
	Alarm Filter Manager Error Messages
	Deserialize Manager Error Messages
	Flatfile Error Messages
	Inform NerveCenter Error Messages
	Inform OV Error Messages
	LogToDatabase Manager Error Messages
	LogToFile Manager Error Messages
	OpC Manager Error Messages
	Poll Manager Error Messages
	Protocol Manager Error Messages
	PA Resync Manager Error Messages
	Server Manager Error Messages
	Trap Manager Error Messages
	NerveCenter installation Error Messages (UNIX)
	OpenView Configuration Error Messages (UNIX)

	Index

